ASYMPTOTIC SIZE OF KLEIBERGEN'S LM AND CONDITIONAL LR TESTS FOR MOMENT CONDITION MODELS

被引:11
作者
Andrews, Donald W. K. [1 ]
Guggenberger, Patrik [2 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] Penn State Univ, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
INSTRUMENTAL VARIABLES REGRESSION; CONSISTENT COVARIANCE-MATRIX; INVARIANT SIMILAR TESTS; LIKELIHOOD RATIO TEST; WEAK IDENTIFICATION; STRUCTURAL PARAMETERS; ECONOMETRIC-MODELS; IV REGRESSION; INFERENCE; RANK;
D O I
10.1017/S0266466616000347
中图分类号
F [经济];
学科分类号
02 ;
摘要
An influential paper by Kleibergen (2005, Econometrica 73, 1103-1123) introduces Lagrange multiplier (LM) and conditional likelihood ratio-like (CLR) tests for nonlinear moment condition models. These procedures aim to have good size performance even when the parameters are unidentified or poorly identified. However, the asymptotic size and similarity (in a uniform sense) of these procedures have not been determined in the literature. This paper does so. This paper shows that the LM test has correct asymptotic size and is asymptotically similar for a suitably chosen parameter space of null distributions. It shows that the CLR tests also have these properties when the dimension p of the unknown parameter θ equals 1. When p ≥ 2, however, the asymptotic size properties are found to depend on how the conditioning statistic, upon which the CLR tests depend, is weighted. Two weighting methods have been suggested in the literature. The paper shows that the CLR tests are guaranteed to have correct asymptotic size when p ≥ 2 when the weighting is based on an estimator of the variance of the sample moments, i.e., moment-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151-175) rank statistic. The paper also determines a formula for the asymptotic size of the CLR test when the weighting is based on an estimator of the variance of the sample Jacobian. However, the results of the paper do not guarantee correct asymptotic size when p ≥ 2 with the Jacobian-variance weighting, combined with the Robin and Smith (2000, Econometric Theory 16, 151-175) rank statistic, because two key sample quantities are not necessarily asymptotically independent under some identification scenarios. Analogous results for confidence sets are provided. Even for the special case of a linear instrumental variable regression model with two or more right-hand side endogenous variables, the results of the paper are new to the literature. © Cambridge University Press 2016.
引用
收藏
页码:1046 / 1080
页数:35
相关论文
共 55 条
[1]   ESTIMATION OF THE PARAMETERS OF A SINGLE EQUATION IN A COMPLETE SYSTEM OF STOCHASTIC EQUATIONS [J].
ANDERSON, TW ;
RUBIN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (01) :46-63
[2]  
Andrews D.W.K., 2014, ECONOMET THEOR, V30, P1
[3]  
Andrews D.W.K., 2014, ECONOMETRIC THEORY
[4]  
Andrews D.W.K., 2014, 1978 YAL U COWL FDN
[5]  
Andrews D.W.K., 2009, 1813 YAL U COWL FDN
[6]   Efficient two-sided nonsimilar invariant tests in IV regression with weak instruments [J].
Andrews, Donald W. K. ;
Moreira, Marcelo J. ;
Stock, James H. .
JOURNAL OF ECONOMETRICS, 2008, 146 (02) :241-254
[7]   Maximum likelihood estimation and uniform inference with sporadic identification failure [J].
Andrews, Donald W. K. ;
Cheng, Xu .
JOURNAL OF ECONOMETRICS, 2013, 173 (01) :36-56
[8]   Estimation and Inference With Weak, Semi-Strong, and Strong Identification [J].
Andrews, Donald W. K. ;
Cheng, Xu .
ECONOMETRICA, 2012, 80 (05) :2153-2211
[9]   Optimal two-sided invariant similar tests for instrumental variables regression [J].
Andrews, DWK ;
Moreira, MJ ;
Stock, JH .
ECONOMETRICA, 2006, 74 (03) :715-752
[10]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858