NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome

被引:60
作者
Durant, Melissa [1 ]
Pugh, B. Franklin [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, Ctr Gene Regulat, University Pk, PA 16802 USA
关键词
D O I
10.1128/MCB.00468-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two of the major histone acetyltransferases in Saccharomyces cerevisiae are NuA4 and SAGA, which acetylate histones H4 and H3, respectively. Acetylated H3 and H4 tails have been implicated in binding bromodomain proteins, including Bdf1. Bdf1 interacts with the general transcription factor TFIID, which might promote preinitiation complex (PIC) assembly. Bdf1 also interacts with the SWR complex (SWR-C). SWR-C is responsible for the deposition of the histone H2A variant H2A.Z. The placement of these interactions into a connected pathway of PIC assembly has not been fully established. Moreover, it is not known how widespread and how variable such a pathway might be on a genomic scale. Here we provide genomic evidence for S. cerevisiae that PIC assembly (TFIID occupancy) and chromatin remodeling (SWR-C and H2A.Z occupancy) are linked in large part to NuA4-directed H4 acetylation and subsequent Bdf1 binding, rather than through SAGA-directed H3 acetylation. Bdf1 and its homolog Bdf2 tend to have distinct locations in the genome. However, the deletion of BDF1 leads to the accumulation of Bdf2 at Bdf1-vacated sites. Thus, while Bdf1 and Bdf2 are at least partially redundant in function, their functions in the genome are geographically distinct.
引用
收藏
页码:5327 / 5335
页数:9
相关论文
共 59 条
[1]   Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome [J].
Albert, Istvan ;
Mavrich, Travis N. ;
Tomsho, Lynn P. ;
Qi, Ji ;
Zanton, Sara J. ;
Schuster, Stephan C. ;
Pugh, B. Franklin .
NATURE, 2007, 446 (7135) :572-576
[2]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[3]   Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae [J].
Babiarz, JE ;
Halley, JE ;
Rine, J .
GENES & DEVELOPMENT, 2006, 20 (06) :700-710
[4]   Identification and distinct regulation of yeast TATA box-containing genes [J].
Basehoar, AD ;
Zanton, SJ ;
Pugh, BF .
CELL, 2004, 116 (05) :699-709
[5]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[6]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[7]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[8]   The diverse functions of histone acetyltransferase complexes [J].
Carrozza, MJ ;
Utley, RT ;
Workman, JL ;
Côté, J .
TRENDS IN GENETICS, 2003, 19 (06) :321-329
[9]   SWI/SNF displaces SAGA-acetylated nucleosomes [J].
Chandy, Mark ;
Gutierrez, Jose L. ;
Prochasson, Philippe ;
Workman, Jerry L. .
EUKARYOTIC CELL, 2006, 5 (10) :1738-1747
[10]  
Clarke AS, 1999, MOL CELL BIOL, V19, P2515