Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles

被引:122
作者
Xue, Mei [1 ]
Li, Lu [2 ]
de Villers, Bertrand J. Tremolet [3 ]
Shen, Huajun [1 ]
Zhu, Jinfeng [1 ]
Yu, Zhibin [2 ]
Stieg, Adam Z. [4 ,5 ]
Pei, Qibing [2 ]
Schwartz, Benjamin J. [3 ,4 ]
Wang, Kang L. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[5] Natl Inst Mat Sci NIMS, WPI Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
关键词
Metal nanoparticles - Plasmonics - Organic solar cells - Butyric acid - Atomic force microscopy;
D O I
10.1063/1.3601742
中图分类号
O59 [应用物理学];
学科分类号
摘要
To understand the effects of Ag nanoparticles (NPs) on the performance of organic solar cells, we examined the properties of hybrid poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric-acid-methyl-ester:Ag NP solar cells using photoinduced charge extraction with a linearly increasing voltage. We find that the addition of Ag NPs into the active layer significantly enhances carrier mobility but decreases the total extracted carrier. Atomic force microscopy shows that the Ag NPs tend to phase segregate from the organic material at high concentrations. This suggests that the enhanced mobility results from carriers traversing Ag NP subnetworks, and that the reduced carrier density results from increased recombination from carriers trapped on the Ag particles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3601742]
引用
收藏
页数:3
相关论文
共 17 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[3]  
2-A
[4]   Improving the Reproducibility of P3HT:PCBM Solar Cells by Controlling the PCBM/Cathode Interface [J].
de Villers, Bertrand Tremolet ;
Tassone, Christopher J. ;
Tolbert, Sarah H. ;
Schwartz, Benjamin J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (44) :18978-18982
[5]   Charge transport in π-conjugated polymers from extraction current transients [J].
Juska, G ;
Arlauskas, K ;
Viliunas, M ;
Genevicius, K ;
Österbacka, R ;
Stubb, H .
PHYSICAL REVIEW B, 2000, 62 (24) :R16235-R16238
[6]   Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles [J].
Kim, Seok-Soon ;
Na, Seok-In ;
Jo, Jang ;
Kim, Dong-Yu ;
Nah, Yoon-Chae .
APPLIED PHYSICS LETTERS, 2008, 93 (07)
[7]   For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% [J].
Liang, Yongye ;
Xu, Zheng ;
Xia, Jiangbin ;
Tsai, Szu-Ting ;
Wu, Yue ;
Li, Gang ;
Ray, Claire ;
Yu, Luping .
ADVANCED MATERIALS, 2010, 22 (20) :E135-+
[8]   Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells [J].
Mandoc, M. Magdalena ;
Veurman, Welmoed ;
Koster, L. Jan Anton ;
de Boer, Bert ;
Blom, Paul W. M. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (13) :2167-2173
[9]   Hybrid conjugated polymer solar cells using patterned GaAs nanopillars [J].
Mariani, Giacomo ;
Laghumavarapu, Ramesh B. ;
de Villers, Bertrand Tremolet ;
Shapiro, Joshua ;
Senanayake, Pradeep ;
Lin, Andrew ;
Schwartz, Benjamin J. ;
Huffaker, Diana L. .
APPLIED PHYSICS LETTERS, 2010, 97 (01)
[10]   Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics [J].
Morfa, Anthony J. ;
Rowlen, Kathy L. ;
Reilly, Thomas H., III ;
Romero, Manuel J. ;
van de lagemaat, Jao .
APPLIED PHYSICS LETTERS, 2008, 92 (01)