Hybrid conjugated polymer solar cells using patterned GaAs nanopillars

被引:44
作者
Mariani, Giacomo [1 ]
Laghumavarapu, Ramesh B. [1 ]
de Villers, Bertrand Tremolet [2 ]
Shapiro, Joshua [1 ]
Senanayake, Pradeep [1 ]
Lin, Andrew [1 ]
Schwartz, Benjamin J. [2 ,3 ]
Huffaker, Diana L. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
conducting polymers; current density; dark conductivity; gallium arsenide; III-V semiconductors; leakage currents; MOCVD; MOCVD coatings; nanostructured materials; organic-inorganic hybrid materials; passivation; solar cells; SEMICONDUCTORS; PASSIVATION; NANOWIRES; SURFACE;
D O I
10.1063/1.3459961
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we study hybrid solar cells based on poly(3-hexylthiophene)-coated GaAs nanopillars grown on a patterned GaAs substrate using selective-area metal organic chemical vapor deposition. The hybrid solar cells show extremely low leakage currents (I congruent to 45 nA @-1V) under dark conditions and an open circuit voltage, short circuit current density, and fill factor of 0.2 V, 8.7 mA/cm(2), and 32%, respectively, giving a power conversion efficiency of eta=0.6% under AM 1.5 G illumination. Surface passivation of the GaAs results in further improvement, yielding eta=1.44% under AM 1.5 G illumination. External quantum efficiency measurements of these polymer/inorganic solar cells are also presented. (C) 2010 American Institute of Physics. [doi:10.1063/1.3459961]
引用
收藏
页数:3
相关论文
共 15 条
[1]   A GaAs nanowire/P3HT hybrid photovoltaic device [J].
Bi, H. ;
LaPierre, R. R. .
NANOTECHNOLOGY, 2009, 20 (46)
[2]  
Björk MT, 2009, NAT NANOTECHNOL, V4, P103, DOI [10.1038/NNANO.2008.400, 10.1038/nnano.2008.400]
[3]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[4]   Solar cell efficiency tables (version 35) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (02) :144-150
[5]   Hybrid nanorod-polymer solar cells [J].
Huynh, WU ;
Dittmer, JJ ;
Alivisatos, AP .
SCIENCE, 2002, 295 (5564) :2425-2427
[6]   Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE [J].
Ikejiri, Keitaro ;
Noborisaka, Jinichiro ;
Hara, Shinjiroh ;
Motohisa, Junichi ;
Fukui, Takashi .
JOURNAL OF CRYSTAL GROWTH, 2007, 298 :616-619
[7]   Surface modification of III-V semiconductors: chemical processes and electronic properties [J].
Lebedev, MV .
PROGRESS IN SURFACE SCIENCE, 2002, 70 (4-8) :153-186
[8]   Low refractive index Si nanopillars on Si substrate [J].
Lin, Gong-Ru ;
Chang, Ya-Chung ;
Liu, En-Shao ;
Kuo, Hao-Chung ;
Lin, Huang-Shen .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[9]   Hybrid Solar Cells from P3HT and Silicon Nanocrystals [J].
Liu, Chin-Y ;
Holman, Zachary C. ;
Kortshagen, Uwe R. .
NANO LETTERS, 2009, 9 (01) :449-452
[10]  
OHNO T, 1991, SURF SCI, V255, P229, DOI 10.1016/0039-6028(91)90679-M