Camera autocalibration and horopter curves

被引:10
作者
Ronda, JI [1 ]
Valdés, A
Jaureguizar, F
机构
[1] Univ Politecn Madrid, Grp Tratamiento Imagenes, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Dept Geometria & Topol, E-28040 Madrid, Spain
关键词
camera autocalibration; horopter; projective geometry; nonlinear optimization;
D O I
10.1023/B:VISI.0000013095.05991.55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a new algorithm for the obtainment of the affine and Euclidean calibration of a camera under general motion. The algorithm exploits the relationships of the horopter curves associated to each pair of cameras with the plane at infinity and the absolute conic. Using these properties we define cost functions whose minimization by means of general purpose techniques provides the required calibration. The experiments show the good convergence properties, computational efficiency and robust performance of the new techniques.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1993, Three-Dimensional Computer Vision: A Geometric Viewpoint
[2]  
ARMSTRONG M, 1996, EUR C COMP VIS, P3
[3]  
BAYBANK SJ, 1993, RECONSTRUCTION PROJE
[4]   Uncalibrated Euclidean reconstruction: a review [J].
Fusiello, A .
IMAGE AND VISION COMPUTING, 2000, 18 (6-7) :555-563
[5]  
Hartley R., 2000, MULTIPLE VIEW GEOMET
[6]  
HARTLEY RI, 1994, IEEE T PAMI, V16
[7]  
HARTLEY RI, 1999, P INT C COMP VIS
[8]   Metacognition in teaching and learning: An introduction [J].
Hartman, HJ .
INSTRUCTIONAL SCIENCE, 1998, 26 (1-2) :1-3
[9]   A THEORY OF SELF-CALIBRATION OF A MOVING CAMERA [J].
MAYBANK, SJ ;
FAUGERAS, OD .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1992, 8 (02) :123-151
[10]   THE PROJECTIVE GEOMETRY OF AMBIGUOUS SURFACES [J].
MAYBANK, SJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 332 (1623) :1-47