A role of SMAD4 in iron metabolism through the positive regulation of hepicidin expression

被引:495
作者
Wang, RH
Li, CL
Xu, XL
Zheng, Y
Xiao, CY
Zerfas, P
Cooperman, S
Eckhaus, M
Rouault, T
Mishra, L
Deng, CX
机构
[1] NIDDKD, Genet Dev & Dis Branch, Bethesda, MD 20892 USA
[2] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
[3] Georgetown Univ, Dev Biol Lab, Dept Med & Surg, Washington, DC 20007 USA
关键词
D O I
10.1016/j.cmet.2005.10.010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-IoxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis.
引用
收藏
页码:399 / 409
页数:11
相关论文
共 57 条
[41]   Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man [J].
Santos, M ;
Schilham, MW ;
Rademakers, LHPM ;
Marx, JJM ;
deSousa, M ;
Clevers, H .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (05) :1975-1985
[42]  
Schutte M, 1996, CANCER RES, V56, P2527
[43]   The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo [J].
Sirard, C ;
de la Pompa, JL ;
Elia, A ;
Itie, A ;
Mirtsos, C ;
Cheung, A ;
Hahn, S ;
Wakeham, A ;
Schwartz, L ;
Kern, SE ;
Rossant, J ;
Mak, TW .
GENES & DEVELOPMENT, 1998, 12 (01) :107-119
[44]   Generalized lacZ expression with the ROSA26 Cre reporter strain [J].
Soriano, P .
NATURE GENETICS, 1999, 21 (01) :70-71
[45]   Evaluation of gene expression measurements from commercial microarray platforms [J].
Tan, PK ;
Downey, TJ ;
Spitznagel, EL ;
Xu, P ;
Fu, D ;
Dimitrov, DS ;
Lempicki, RA ;
Raaka, BM ;
Cam, MC .
NUCLEIC ACIDS RESEARCH, 2003, 31 (19) :5676-5684
[46]   New insights into TGF-β-Smad signalling [J].
ten Dijke, P ;
Hill, CS .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (05) :265-273
[47]  
TORRANCE J D, 1968, South African Journal of Medical Sciences, V33, P9
[48]   Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice [J].
Viatte, L ;
Lesbordes-Brion, JC ;
Lou, DQ ;
Bennoun, M ;
Nicolas, G ;
Kahn, A ;
Canonne-Hergaux, F ;
Vaulont, S .
BLOOD, 2005, 105 (12) :4861-4864
[49]   TGF-β signaling in mammary gland development and tumorigenesis [J].
Wakefield, LM ;
Piek, E ;
Böttinger, EP .
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2001, 6 (01) :67-82
[50]   A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint [J].
Wang, RH ;
Yu, HT ;
Deng, CX .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (49) :17108-17113