Assessment of the risk of phosphorus loading due to resuspended sediment

被引:83
作者
Koski-Vähälä, J
Hartikainen, H
机构
[1] Univ Helsinki, Dept Limnol & Environm Protect, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Dept Appl Chem & Microbiol, FIN-00014 Helsinki, Finland
关键词
D O I
10.2134/jeq2001.303960x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Resuspension is a multiphase phenomenon where suspended solids encounter water layers differing in physico-chemical properties that affect the reactions of phosphorus (P). The role of resuspended sediment as a sink or source of dissolved P was determined in a laboratory study of P desorption-sorption equilibria. Gradual mixing was simulated using decreasing solid concentrations and varying environmental conditions (pH, redox, ionic strength). To describe the P exchange when the particles encounter dissimilar water layers, the extent of P sorption to or desorption from solids was expressed as a function of P concentration in the bath solutions. The equilibrium phosphorus concentration (EPC), at which there is no net P release from or retention to the particles, proved to be a suitable parameter for assessment of P load risk. Under oxic conditions at pH 7, commonly prevailing in lakes, the EPC values ranged from 11 to 27 mug P L-1. The larger the water volume the suspended material was mixed with, the higher the P concentration, allowing desorption to occur. As for chemical factors affecting P mobilization, EPC followed the order: pH 7 < pH 7 anoxic < pH 9. A separate extraction experiment revealed that elevated pH enhanced P mobilization more as the concentration of solids decresed. The results demonstrate that high pH (a common characteristic in eutrophic lakes during summer), when linked with intensive resuspension, may markedly increase the internal P loading risk. As for the risk assessment, the quantification of the internal P loading would be improved by isotherm studies combined with field observations.
引用
收藏
页码:960 / 966
页数:7
相关论文
共 55 条
[11]   OCCURRENCE OF PHOSPHORUS AND ITS POTENTIAL REMOBILIZATION IN THE LITTORAL SEDIMENTS OF A PRODUCTIVE ENGLISH LAKE [J].
DRAKE, JC ;
HEANEY, SI .
FRESHWATER BIOLOGY, 1987, 17 (03) :513-523
[12]  
Einsele W, 1938, ARCH HYDROBIOL, V33, P361
[13]   EMPIRICAL-EVIDENCE OF THE IMPORTANCE OF SEDIMENT RESUSPENSION IN LAKES [J].
EVANS, RD .
HYDROBIOLOGIA, 1994, 284 (01) :5-12
[14]   AEROBIC LAKE MUDS FOR REMOVAL OF PHOSPHORUS FROM LAKE WATERS [J].
FITZGERALD, GP .
LIMNOLOGY AND OCEANOGRAPHY, 1970, 15 (04) :550-+
[15]   IMPORTANCE OF SEDIMENTS IN UNDERSTANDING NUTRIENT CYCLINGS IN LAKES [J].
FORSBERG, C .
HYDROBIOLOGIA, 1989, 176 :263-277
[17]  
GACHTER R, 1985, LIMNOL OCEANOGR, V30, P364
[18]  
GUNATILAKA A, 1982, HYDROBIOLOGIA, V91-2, P293, DOI 10.1007/BF02391946
[19]  
Gunatilaka A., 1978, VERH INT VER LIMNOL, V20, P986
[20]  
Hamilton DP., 1988, VERH INT VER LIMNOL, V23, P624