A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments

被引:45
作者
Broët, P
Lewin, A
Richardson, S
Dalmasso, C
Magdelenat, H
机构
[1] INSERM, U472, F-94807 Villejuif, France
[2] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Publ Hlth, London W2 1PG, England
[3] Inst Curie, F-75248 Paris, France
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1093/bioinformatics/bth285
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Multiclass response (MCR) experiments are those in which there are more than two classes to be compared. In these experiments, though the null hypothesis is simple, there are typically many patterns of gene expression changes across the different classes that led to complex alternatives. In this paper, we propose a new strategy for selecting genes in MCR that is based on a flexible mixture model for the marginal distribution of a modified F-statistic. Using this model, false positive and negative discovery rates can be estimated and combined to produce a rule for selecting a subset of genes. Moreover, the method proposed allows calculation of these rates for any predefined subset of genes. Results: We illustrate the performance our approach using simulated datasets and a real breast cancer microarray dataset. In this latter study, we investigate predefined subset of genes and point out interesting differences between three distinct biological pathways.
引用
收藏
页码:2562 / 2571
页数:10
相关论文
共 23 条
[1]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[2]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[3]  
[Anonymous], 2003, Statistical Analysis of Gene Expression Microarray Data. Interdisciplinary Statistics
[4]  
[Anonymous], 2002, GENOME BIOL, DOI DOI 10.1186/GB-2002-3-2-RESEARCH000911864371
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Statistical methods for ranking differentially expressed genes [J].
Broberg, P .
GENOME BIOLOGY, 2003, 4 (06)
[7]   Bayesian hierarchical model for identifying changes in gene expression from microarray experiments [J].
Broët, P ;
Richardson, S ;
Radvanyi, F .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (04) :671-683
[8]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[9]   Operating characteristics and extensions of the false discovery rate procedure [J].
Genovese, C ;
Wasserman, L .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :499-517
[10]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548