Visualizing spatially correlated dynamics that directs RNA conformational transitions

被引:210
作者
Zhang, Qi [1 ]
Stelzer, Andrew C. [1 ]
Fisher, Charles K. [1 ]
Al-Hashimi, Hashim M. [1 ]
机构
[1] Univ Michigan, Dept Chem & Biophys, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nature06389
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNAs fold into three- dimensional ( 3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals(1-3). RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways(4,5). However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings ( RDCs)(6,7). Using this approach, we uncovered super- large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 536 and 1106 in a highly correlated manner ( R = 0.97) while simultaneously ( R = 0.81 - 0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand- bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand- induced transitions along specific predefined conformational pathways.
引用
收藏
页码:1263 / U14
页数:6
相关论文
共 36 条
[1]   Structure of HIV-1 TAB RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge [J].
AboulEla, F ;
Karn, J ;
Varani, G .
NUCLEIC ACIDS RESEARCH, 1996, 24 (20) :3974-3981
[2]   THE STRUCTURE OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TAR RNA REVEALS PRINCIPLES OF RNA RECOGNITION BY TAT PROTEIN [J].
ABOULELA, F ;
KARN, J ;
VARANI, G .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (02) :313-332
[3]   Dynamics-based amplification of RNA function and its characterization by using NMR spectroscopy [J].
Al-Hashimi, HM .
CHEMBIOCHEM, 2005, 6 (09) :1506-1519
[4]   Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings [J].
Al-Hashimi, HM ;
Gosser, Y ;
Gorin, A ;
Hu, WD ;
Majumdar, A ;
Patel, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (02) :95-102
[5]   Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings [J].
Bailor, Maximillian H. ;
Musselman, Catherine ;
Hansen, Alexandar L. ;
Gulati, Kush ;
Patel, Dinshaw J. ;
Al-Hashimi, Hashim M. .
NATURE PROTOCOLS, 2007, 2 (06) :1536-1546
[6]   Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings [J].
Blackledge, M .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2005, 46 (01) :23-61
[7]   New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins [J].
Brüschweiler, R .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (02) :175-183
[8]   Amplitudes of protein backbone dynamics and correlated motions in a small α/β protein:: Correspondence of dipolar coupling and heteronuclear relaxation measurements [J].
Clore, GM ;
Schwieters, CD .
BIOCHEMISTRY, 2004, 43 (33) :10678-10691
[9]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991
[10]   Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase [J].
Cornilescu, G ;
Marquardt, JL ;
Ottiger, M ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6836-6837