Artificial intelligence in synthetic chemistry: achievements and prospects

被引:46
作者
Baskin, Igor I. [1 ,2 ,4 ,5 ,6 ]
Madzhidov, Timur I. [2 ,6 ,7 ]
Antipin, Igor S. [2 ,7 ,8 ,9 ]
Varnek, Alexandre A. [2 ,3 ,6 ,10 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Leninskie Gory 1,Stroenie 2, Moscow 119991, Russia
[2] Kazan Volga Redg Fed Univ, AM Butlerov Inst Chem, Ul Kremlevskaya 18, Kazan 420008, Russia
[3] Univ Strasbourg, CNRS, UniStra, Lab Chemoinformat,UMR 7140, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
[4] MSU, Phys & Math Sci, Moscow, Russia
[5] MSU, Fac Phys, Moscow, Russia
[6] KFU, Kazan, Russia
[7] KFU, Chem Sci, Kazan, Russia
[8] RAS, Moscow, Russia
[9] KFU, Dept Organ Chem, Moscow, Russia
[10] Univ Strasbourg, Strasbourg, France
基金
俄罗斯科学基金会;
关键词
STRUCTURE-REACTIVITY RELATIONSHIP; EXPERT SYSTEMS-APPROACH; COMPUTER-AIDED-DESIGN; GENOME-SCALE CLASSIFICATION; MOLECULAR-FIELD ANALYSIS; ORGANIC-REACTION SCHEMES; DATA MINING TECHNIQUES; REACTION-MATRIX TYPES; DE-NOVO DESIGN; NEURAL-NETWORK;
D O I
10.1070/RCR4746
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The review is devoted to the achievements in analysis of information on chemical reactions using machine learning methods. Four large areas that actively use these methods are outlined: computer-assisted planning of synthesis, analysis and visualization of chemical reaction data, prediction of the quantitative characteristics of reactions and computer-aided design of catalysts. The bibliography includes 346 references.
引用
收藏
页码:1127 / 1156
页数:30
相关论文
共 343 条
[41]   A new statistical approach to predicting aromatic hydroxylation sites. Comparison with model-based approaches [J].
Borodina, Y ;
Rudik, A ;
Filimonov, D ;
Kharchevnikova, N ;
Dmitriev, A ;
Blinova, V ;
Porolkov, V .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (06) :1998-2009
[42]   Predicting biotransformation potential from molecular structure [J].
Borodina, Y ;
Sadym, A ;
Filimonov, D ;
Blinova, V ;
Dmitriev, A ;
Poroikov, V .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (05) :1636-1646
[43]  
Borodina Y.V., 1996, Pharm. Chem. J, V30, P760
[44]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[45]   Analysis of the reactions used for the preparation of drug candidate molecules [J].
Carey, John S. ;
Laffan, David ;
Thomson, Colin ;
Williams, Mike T. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2006, 4 (12) :2337-2347
[46]   Machine learning of chemical reactivity from databases of organic reactions [J].
Carrera, Goncalo V. S. M. ;
Gupta, Sunil ;
Aires-de-Sousa, Joao .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2009, 23 (07) :419-429
[47]   Ester hydrolysis rate constant prediction from quantum topological molecular similarity descriptors [J].
Chaudry, UA ;
Popelier, PLA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (22) :4578-4582
[48]  
Chen L., 2003, Handbook of Chemoinformatics: From Data to Knowledge, V1, P348
[49]   AUTOMATIC EXTRACTION OF CHEMICAL KNOWLEDGE FROM ORGANIC-REACTION DATA - ADDITION OF CARBON-HYDROGEN BONDS TO CARBON-CARBON DOUBLE-BONDS [J].
CHEN, LG ;
GASTEIGER, J ;
ROSE, JR .
JOURNAL OF ORGANIC CHEMISTRY, 1995, 60 (24) :8002-8014
[50]   Over 20 years of reaction access systems from MDL: A novel reaction substructure search algorithm [J].
Chen, LG ;
Nourse, JG ;
Christie, BD ;
Leland, BA ;
Grier, DL .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (06) :1296-1310