Linear and non-linear response to parameter variations in a mesoscale model

被引:47
作者
Hacker, J. P. [1 ]
Snyder, C. [2 ]
Ha, S. -Y. [2 ]
Pocernich, M. [2 ]
机构
[1] USN, Postgrad Sch, Dept Meteorol, Monterey, CA 93943 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
ENSEMBLE KALMAN FILTER; FALSE DISCOVERY RATE; BOUNDARY-LAYER; CONVECTIVE PARAMETERIZATION; SENSITIVITY-ANALYSIS; FIELD SIGNIFICANCE; SIMULTANEOUS STATE; SYSTEM; UNCERTAINTY; PREDICTION;
D O I
10.1111/j.1600-0870.2010.00505.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter uncertainty in atmospheric model forcing and closure schemes has motivated both parameter estimation with data assimilation and use of pre-specified distributions to simulate model uncertainty in short-range ensemble prediction. This work assesses the potential for parameter estimation and ensemble prediction by analysing 2 months of mesoscale ensemble predictions in which each member uses distinct, and fixed, settings for four model parameters. A space-filling parameter selection design leads to a unique parameter set for each ensemble member. An experiment to test linear scaling between parameter distribution width and ensemble spread shows the lack of a general linear response to parameters. Individual member near-surface spatial means, spatial variances and skill show that perturbed models are typically indistinguishable. Parameter-state rank correlation fields are not statistically significant, although the presence of other sources of noise may mask true correlations. Results suggest that ensemble prediction using perturbed parameters may be a simple complement to more complex model-error simulation methods, but that parameter estimation may prove difficult or costly for real mesoscale numerical weather prediction applications.
引用
收藏
页码:429 / 444
页数:16
相关论文
共 63 条
[1]   Ensemble-based simultaneous state and parameter estimation with MM5 [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (12)
[2]   Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
MONTHLY WEATHER REVIEW, 2006, 134 (10) :2951-2970
[3]   Uncertainty in the specification of surface characteristics: A study of prediction errors in the boundary layer [J].
Alapaty, K ;
Raman, S ;
Niyogi, DS .
BOUNDARY-LAYER METEOROLOGY, 1997, 82 (03) :473-500
[4]   Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter [J].
Annan, JD ;
Lunt, DJ ;
Hargreaves, JC ;
Valdes, PJ .
NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) :363-371
[5]   Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter [J].
Annan, JD ;
Hargreaves, JC ;
Edwards, NR ;
Marsh, R .
OCEAN MODELLING, 2005, 8 (1-2) :135-154
[6]  
BALL FK, 1960, Q J ROY METEOR SOC, V44, P2823
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   The MOGREPS short-range ensemble prediction system [J].
Bowler, Neill E. ;
Arribas, Alberto ;
Mylne, Kenneth R. ;
Robertson, Kelvyn B. ;
Beare, Sarah E. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (632) :703-722
[9]   Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill [J].
Clark, Adam J. ;
Gallus, William A., Jr. ;
Chen, Tslng-Chang .
MONTHLY WEATHER REVIEW, 2008, 136 (06) :2140-2156
[10]   An introduction to estimation theory [J].
Cohn, SE .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) :257-288