Linear and non-linear response to parameter variations in a mesoscale model

被引:47
作者
Hacker, J. P. [1 ]
Snyder, C. [2 ]
Ha, S. -Y. [2 ]
Pocernich, M. [2 ]
机构
[1] USN, Postgrad Sch, Dept Meteorol, Monterey, CA 93943 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
ENSEMBLE KALMAN FILTER; FALSE DISCOVERY RATE; BOUNDARY-LAYER; CONVECTIVE PARAMETERIZATION; SENSITIVITY-ANALYSIS; FIELD SIGNIFICANCE; SIMULTANEOUS STATE; SYSTEM; UNCERTAINTY; PREDICTION;
D O I
10.1111/j.1600-0870.2010.00505.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Parameter uncertainty in atmospheric model forcing and closure schemes has motivated both parameter estimation with data assimilation and use of pre-specified distributions to simulate model uncertainty in short-range ensemble prediction. This work assesses the potential for parameter estimation and ensemble prediction by analysing 2 months of mesoscale ensemble predictions in which each member uses distinct, and fixed, settings for four model parameters. A space-filling parameter selection design leads to a unique parameter set for each ensemble member. An experiment to test linear scaling between parameter distribution width and ensemble spread shows the lack of a general linear response to parameters. Individual member near-surface spatial means, spatial variances and skill show that perturbed models are typically indistinguishable. Parameter-state rank correlation fields are not statistically significant, although the presence of other sources of noise may mask true correlations. Results suggest that ensemble prediction using perturbed parameters may be a simple complement to more complex model-error simulation methods, but that parameter estimation may prove difficult or costly for real mesoscale numerical weather prediction applications.
引用
收藏
页码:429 / 444
页数:16
相关论文
共 63 条
[41]   Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data [J].
Noh, Y ;
Cheon, WG ;
Hong, SY ;
Raasch, S .
BOUNDARY-LAYER METEOROLOGY, 2003, 107 (02) :401-427
[42]   Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection [J].
Posselt, Derek J. ;
Vukicevic, Tomislava .
MONTHLY WEATHER REVIEW, 2010, 138 (05) :1513-1535
[43]   Using Bayesian model averaging to calibrate forecast ensembles [J].
Raftery, AE ;
Gneiting, T ;
Balabdaoui, F ;
Polakowski, M .
MONTHLY WEATHER REVIEW, 2005, 133 (05) :1155-1174
[44]   Using numerical weather prediction to assess climate models [J].
Rodwell, M. J. ;
Palmer, T. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (622) :129-146
[45]   Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes [J].
Sanderson, Benjamin M. ;
Knutti, R. ;
Aina, T. ;
Christensen, C. ;
Faull, N. ;
Frame, D. J. ;
Ingram, W. J. ;
Piani, C. ;
Stainforth, D. A. ;
Stone, D. A. ;
Allen, M. R. .
JOURNAL OF CLIMATE, 2008, 21 (11) :2384-2400
[46]  
Santer T.J., 2003, DESIGN ANAL COMPUTER
[47]  
SAUVAGEOT H, 1995, J ATMOS SCI, V52, P1070, DOI 10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO
[48]  
2
[49]  
SKAMAROCK WC, 2008, TN475 NAT CTR ATM RE
[50]   Uncertainty in predictions of the climate response to rising levels of greenhouse gases [J].
Stainforth, DA ;
Aina, T ;
Christensen, C ;
Collins, M ;
Faull, N ;
Frame, DJ ;
Kettleborough, JA ;
Knight, S ;
Martin, A ;
Murphy, JM ;
Piani, C ;
Sexton, D ;
Smith, LA ;
Spicer, RA ;
Thorpe, AJ ;
Allen, MR .
NATURE, 2005, 433 (7024) :403-406