Self-assembly at the liquid/solid interface: STM reveals

被引:437
作者
De Feyter, S [1 ]
De Schryver, FC [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Lab Phytochem & Spect, B-3001 Heverlee, Belgium
关键词
D O I
10.1021/jp045298k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The liquid/solid interface provides an ideal environment to investigate self-assembly phenomena, and scanning tunneling microscopy (STM) is the preferred methodology to probe the structure and the properties of physisorbed monolayers on the nanoscale. Physisorbed monolayers are of relevance in areas such as lubrication, patterning of surfaces on the nanoscale, and thin film based organic electronic devices, to name a few. It's important to gain insight in the factors which control the ordering of molecules at the liquid/solid interface in view of the targeted properties. STM provides detailed insight into the importance of molecule-substrate (epitaxy) and molecule- molecule interactions (hydrogen bonding, metal complexation, and fluorophobic/ fluorophilic interactions) to direct the ordering of both achiral and chiral molecules on the atomically flat surface. By controlling the location and orientation of functional groups, chemical reactions can be induced at the liquid/solid interface, via external stimuli, such as light, or by controlled manipulation with the STM tip. The electronic properties of the self-assembled physisorbed molecules can be probed by taking advantage of the operation principle of STM, revealing spatially resolved intramolecular differences within these physisorbed molecules.
引用
收藏
页码:4290 / 4302
页数:13
相关论文
共 118 条