Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity

被引:118
作者
Varadarajan, N
Gam, J
Olsen, MJ
Georgiou, G [1 ]
Iverson, BL
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA
[3] Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA
关键词
engineering; flow cytometry;
D O I
10.1073/pnas.0500063102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exquisite selectivity and catalytic activity of enzymes have been shaped by the effects of positive and negative selection pressure during the course of evolution. In contrast, enzyme variants engineered by using in vitro screening techniques to accept novel substrates typically display a higher degree of catalytic promiscuity and lower total turnover in comparison with their natural counterparts. Using bacterial display and multiparameter flow cytometry, we have developed a novel methodology for emulating positive and negative selective pressure in vitro for the isolation of enzyme variants with reactivity for desired novel substrates, while simultaneously excluding those with reactivity toward undesired substrates. Screening of a large library of random mutants of the Escherichia colt endopeptidase OmpT led to the isolation of an enzyme variant, 1.3.19, that cleaved an Ala-Arg peptide bond instead of the Arg-Arg bond preferred by the WT enzyme. Variant 1.3.19 exhibited greater than three million-fold selectivity (-Ala-Arg-/-Arg-Arg-) and a catalytic efficiency for Ala-Arg cleavage that is the same as that displayed by the parent for the preferred substrate, Arg-Arg. A single amino acid Ser223Arg substitution was shown to recapitulate completely the unique catalytic properties of the 1.3.19 variant. These results can be explained by proposing that this mutation acts to "swap" the P-1 Arg side chain normally found in WT substrate peptides with the 223Arg side chain in the S-1 subsite of OmpT.
引用
收藏
页码:6855 / 6860
页数:6
相关论文
共 44 条
[1]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[2]   Combinatorial and computational challenges for biocatalyst design [J].
Arnold, FH .
NATURE, 2001, 409 (6817) :253-257
[3]   Structural plasticity in a remodeled protein-protein interface [J].
Atwell, S ;
Ultsch, M ;
DeVos, AM ;
Wells, JA .
SCIENCE, 1997, 278 (5340) :1125-1128
[4]  
BAADEN M, IN PRESS BIOPHYS J
[5]   STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS [J].
BONE, R ;
FUJISHIGE, A ;
KETTNER, CA ;
AGARD, DA .
BIOCHEMISTRY, 1991, 30 (43) :10388-10398
[6]   Alteration of Cre recombinase site specificity by substrate-linked protein evolution [J].
Buchholz, F ;
Stewart, AF .
NATURE BIOTECHNOLOGY, 2001, 19 (11) :1047-1052
[7]  
Caputo A, 1999, PROTEINS, V35, P415, DOI 10.1002/(SICI)1097-0134(19990601)35:4<415::AID-PROT5>3.3.CO
[8]  
2-Z
[9]   ENGINEERING ENZYME SPECIFICITY BY SUBSTRATE-ASSISTED CATALYSIS [J].
CARTER, P ;
WELLS, JA .
SCIENCE, 1987, 237 (4813) :394-399
[10]   Cell-surface display of heterologous proteins: From high-throughput screening to environmental applications [J].
Chen, W ;
Georgiou, G .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (05) :496-503