Front propagation into an unstable state of reaction-transport systems

被引:52
作者
Fedotov, S [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1103/PhysRevLett.86.926
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We studied the propagation of traveling fronts into an unstable state of the reaction-transport systems involving integral transport. By using a hyperbolic scaling procedure and singular perturbation techniques, we determined a Hamiltonian structure of reaction-transport equations. This structure allowed us to derive asymptotic formulas for the propagation rate of a reaction front. We showed that the macroscopic dynamics of the front are "nonuniversal" and depend on the choice of the underlying random walk model for the microscopic transport process.
引用
收藏
页码:926 / 929
页数:4
相关论文
共 36 条
[1]  
[Anonymous], 1986, REACTION DIFFUSION E
[2]  
Aronson D. G., 1975, LECT NOTES MATH, V446, P5
[3]   Reaction-diffusion master equation: A comparison with microscopic simulations [J].
Baras, F ;
Mansour, MM .
PHYSICAL REVIEW E, 1996, 54 (06) :6139-6148
[4]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[7]  
Cahn JW, 1998, SIAM J APPL MATH, V59, P455, DOI 10.1137/S0036139996312703
[8]  
CLAVIN P, 1994, ANNU REV FLUID MECH, V26, P321, DOI 10.1146/annurev.fl.26.010194.001541
[9]   PROPAGATION INTO AN UNSTABLE STATE [J].
DEE, G .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (5-6) :705-717
[10]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99