Traveling waves in a convolution model for phase transitions

被引:486
作者
Bates, PW
Fife, PC
Ren, XF
Wang, XF
机构
[1] UNIV UTAH,DEPT MATH,SALT LAKE CITY,UT 84112
[2] TULANE UNIV,DEPT MATH,NEW ORLEANS,LA 70118
关键词
D O I
10.1007/s002050050037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence, uniqueness, stability and regularity properties of traveling-wave solutions of a bistable nonlinear integrodifferential equation are established, as well as their global asymptotic stability in the case of zero-velocity continuous waves. This equation is a direct analog of the more familiar bistable nonlinear diffusion equation, and shares many of its properties. It governs gradient flows for free-energy functionals with general nonlocal interaction integrals penalizing spatial nonuniformity.
引用
收藏
页码:105 / 136
页数:32
相关论文
共 21 条
[1]  
ALIKAKOS ND, IN PRESS AM MATH SOC
[2]   The existence of travelling wave solutions of a generalized phase-field model [J].
Bates, PW ;
Fife, PC ;
Gardner, RA ;
Jones, CKRT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :60-93
[3]   Phase field models for hypercooled solidification [J].
Bates, PW ;
Fife, PC ;
Gardner, RA ;
Jones, CKRT .
PHYSICA D, 1997, 104 (01) :1-31
[4]  
BATES PW, 1997, IN PRESS EUROPEAN J
[5]   THE EXISTENCE OF TRAVELING WAVES FOR PHASE FIELD-EQUATIONS AND CONVERGENCE TO SHARP INTERFACE MODELS IN THE SINGULAR LIMIT [J].
CAGINALP, G ;
NISHIURA, Y .
QUARTERLY OF APPLIED MATHEMATICS, 1991, 49 (01) :147-162
[6]  
De Masi A., 1994, REND MAT APPL, V14, P693
[7]   Travelling fronts in non-local evolution equations [J].
DeMasi, A ;
Gobron, T ;
Presutti, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 132 (02) :143-205
[8]   MOTION BY CURVATURE BY SCALING NONLOCAL EVOLUTION-EQUATIONS [J].
DEMASI, A ;
ORLANDI, E ;
PRESUTTI, E ;
TRIOLO, L .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (3-4) :543-570
[9]  
DEMASI A, 1994, P ROY SOC EDINB A, V124, P1013, DOI 10.1017/S0308210500022472
[10]   EXISTENCE AND UNIQUENESS OF TRAVELING WAVES FOR A NEURAL-NETWORK [J].
ERMENTROUT, GB ;
MCLEOD, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :461-478