Travelling fronts in non-local evolution equations

被引:79
作者
DeMasi, A
Gobron, T
Presutti, E
机构
[1] ECOLE POLYTECH,PHYS MAT CONDENSEE LAB,F-91128 PALAISEAU,FRANCE
[2] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
关键词
D O I
10.1007/BF00380506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of travelling fronts and their uniqueness module translations are proved in the context of a one-dimensional, non-local, evolution equation derived in [5] from Ising systems with Glauber dynamics and Kac potentials. The front describes the moving interface between the stable and the metastable phases and it is shown to attract all the profiles which at +/-infinity are in the domain of attraction of the stable and, respectively, the metastable states. The results are compared with those of FIFE & MCLEOD [13] for the Allen-Cahn equation.
引用
收藏
页码:143 / 205
页数:63
相关论文
共 20 条
[1]   ON THE VALIDITY OF AN EINSTEIN RELATION IN MODELS OF INTERFACE DYNAMICS [J].
BUTTA, P .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (5-6) :1401-1406
[2]   HIGHER-ORDER PHASE FIELD MODELS AND DETAILED ANISOTROPY [J].
CAGINALP, G ;
FIFE, P .
PHYSICAL REVIEW B, 1986, 34 (07) :4940-4943
[3]  
Chow SN, 1982, METHODS BIFURCATION, V251
[4]  
DALPASSO R, 1991, HEAT EQUATION NONLOC
[5]  
DEMASI A, 1994, NONLINEARITY, V7, P633, DOI 10.1088/0951-7715/7/3/001
[6]   MOTION BY CURVATURE BY SCALING NONLOCAL EVOLUTION-EQUATIONS [J].
DEMASI, A ;
ORLANDI, E ;
PRESUTTI, E ;
TRIOLO, L .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (3-4) :543-570
[7]  
DEMASI A, 1994, P ROY SOC EDINB A, V124, P1013, DOI 10.1017/S0308210500022472
[8]  
DEMASI A, 1994, RENDICONTI MATEMATIC, V14
[9]  
DEMASI A, 1992, CARR2892 REP
[10]  
Diekmann O., 1978, NONLINEAR ANAL-THEOR, V2, P721, DOI [10.1016/0362-546X(78)90015-9, DOI 10.1016/0362-546X(78)90015-9]