A visual framework for knowledge discovery on the Web: An empirical study of business intelligence exploration

被引:106
作者
Chung, W [1 ]
Chen, H
Nunamaker, JF
机构
[1] Univ Texas, Coll Business Adm, Dept Informat & Decis Sci, El Paso, TX 79968 USA
[2] Univ Arizona, Eller Coll, Tucson, AZ 85721 USA
[3] Univ Arizona, Ctr Management Informat, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
business intelligence; genetic algorithm; knowledge map; multidimensional scaling; visualization; Web browsing; Web community;
D O I
10.1080/07421222.2005.11045821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Information overload often hinders knowledge discovery on the Web. Existing tools lack analysis and visualization capabilities. Search engine displays often overwhelm users with irrelevant information. This research proposes a visual framework for knowledge discovery on the Web. The framework incorporates Web mining, clustering, and visualization techniques to support effective exploration of knowledge. Two new browsing methods were developed and applied to the business intelligence domain: Web community uses a genetic algorithm to organize Web sites into a tree format; knowledge map uses a multidimensional scaling algorithm to place Web sites as points on a screen. Experimental results show that knowledge map outperformed Kartoo, a commercial search engine with graphical display, in terms of effectiveness and efficiency. Web community was found to be more effective, efficient, and usable than result list. Our visual framework thus helps to alleviate information overload on the Web and offers practical implications for search engine developers.
引用
收藏
页码:57 / 84
页数:28
相关论文
共 43 条
[31]  
Nunamaker Jr J. F., 2001, P 34 ANN HAW INT C S, P461
[32]  
Palmer C. R., 2001, P 1 ACM IEEE CS JOIN, P451
[33]  
Salton G., 1988, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer
[34]   The MetaCrawler architecture for resource aggregation on the Web [J].
Selberg, E ;
Etzioni, O .
IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1997, 12 (01) :11-14
[35]   Normalized cuts and image segmentation [J].
Shi, JB ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) :888-905
[36]   The eyes have it: A task by data type taxonomy for information visualizations [J].
Shneiderman, B .
IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, :336-343
[37]  
SPENCE R, 2001, INFORMATION VISUALIZ
[38]  
Tolle KM, 2000, J AM SOC INFORM SCI, V51, P352, DOI 10.1002/(SICI)1097-4571(2000)51:4<352::AID-ASI5>3.0.CO
[39]  
2-8
[40]  
Wise J. A., 1995, Proceedings. Information Visualization (Cat. No.95TB100000), P51, DOI 10.1109/INFVIS.1995.528686