Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x ≤ 0.30)

被引:145
作者
Croguennec, L
Pouillerie, C
Mansour, AN
Delmas, C
机构
[1] CNRS, ICMCB, F-33608 Pessac, France
[2] Ecole Natl Super Chim & Phys Bordeaux, F-33608 Pessac, France
[3] SAFT, F-33074 Bordeaux, France
[4] USN, Ctr Surface Warfare, Carderock Div, W Bethesda, MD 20817 USA
关键词
D O I
10.1039/b003377o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The full structural characterisation of the highly deintercalated LixNi1.02O2 (x less than or equal to 0.30) phases has been performed. The structure of the Li0.30Ni1.02O2 phase was refined by the Rietveld method. The cationic distribution was found to be identical to that of the pristine material. A study of the Li//LixNi1.02O2 system at high potential has shown the successive formation of two phases with O3 (AB CA BC) and O1 (AB) oxygen packing, respectively, near the NiO2 composition. Since slab gliding is at the origin of the O3 to O1 transition, layer displacement faults were observed in these two phases. For the O3 phase, as soon as all the lithium ions are removed from an interslab space, an O1-type fault occurs locally. In contrast, for the O1 phase, the presence of extra-nickel ions in the interslab space prevents slab gliding in the vicinity and, therefore, O3-type interslab spaces remain in the O1-type packing. The X-ray diffraction patterns were simulated using the DIFFaX program. It was shown that the stabilisation of the O1-type packing at the very end of the deintercalation process is due to a minimisation of the interactions between the p orbitals of the oxygen ions through the van der Waals gap. A two-phase domain is observed between Li0.30NiO2 and a composition close to NiO2 since, for very low lithium contents, the Ni3+/Ni4+ ordering (and the lithium/vacancy ordering) is no longer possible and the difference in size between the cations leads to the formation of constraints which destabilise the Ni3+ ions in a lattice where Ni4+ ions prevail. At the end of the deintercalation process, the NiO2 compound appears to be highly covalent, therefore, the steric effects prevail over the electrostatic repulsion effects, as in chalcogenides.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 49 条
[1]   SIR92 - a program for automatic solution of crystal structures by direct methods [J].
ALTOMARE, A ;
CASCARANO, G ;
GIACOVAZZO, G ;
GUAGLIARDI, A ;
BURLA, MC ;
POLIDORI, G ;
CAMALLI, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 :435-435
[2]   CoO2, the end member of the LixCoO2 solid solution [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :1114-1123
[3]  
[Anonymous], 1986, NATO ADV SCI I B-PHY
[4]  
[Anonymous], 1979, INTERCALATED LAYERED
[5]   Reversibility of LiNiO2 cathode [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1997, 95 (3-4) :275-282
[6]  
Arai H, 2000, MATER RES SOC SYMP P, V575, P3
[7]   CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD [J].
ARAI, H ;
OKADA, S ;
OHTSUKA, H ;
ICHIMURA, M ;
YAMAKI, J .
SOLID STATE IONICS, 1995, 80 (3-4) :261-269
[8]  
BICHON J, 1973, CR ACAD SCI C CHIM, V276, P1283
[9]  
Carvajal J. R., 1990, SAT M POWD DIFFR 15, P127
[10]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696