A1152D mutation of the Na+ channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation

被引:13
作者
Bouhours, M
Luce, S
Sternberg, D
Willer, JC
Fontaine, B
Tabti, N
机构
[1] UPMC, Fac Med Pitie Salpetriere, Neurophysiol Lab, INSERM,U546, F-75013 Paris, France
[2] Grp Hosp Pitie Salpetriere, Biochim Lab, F-75013 Paris, France
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 565卷 / 02期
关键词
D O I
10.1113/jphysiol.2004.081018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Missense mutations in the human skeletal muscle Na+ channel alpha subunit (hSkM1) are responsible for a number of muscle excitability disorders. Among them, paramyotonia congenita (PC) is characterized by episodes of muscle stiffness induced by cold and aggravated by exercise. We have identified a new PC-associated mutation, which substitutes aspartic acid for a conserved alanine in the S4-S5 linker of domain III (A1152D). This residue is of particular interest since its homologue in the rat brain type II Na+ channel has been suggested as an essential receptor site for the fast inactivation particle. To identify the biophysical changes induced by the A1152D mutation, we stably expressed hSkM1 mutant or wild-type (WT) channels in HEK293 (human embryonic kidney) cells, and recorded whole-cell Na+ currents with the patch-clamp technique. Experiments were performed both at 21 and I VC to better understand the sensitivity to cold of paramyotonia. The A1152D mutation disrupted channel fast inactivation. In comparison to the WT, mutant channels inactivated with slower kinetics and displayed a 5 mV depolarizing shift in the voltage dependence of the steady-state. The other noticeable defect of A1152D mutant channels was an accelerated rate of deactivation from the inactivated state. Decreasing temperature by 10 degrees C amplified the differences in channel gating kinetics between mutant and WT, and unveiled differences in both the sustained current and channel deactivation from the open state. Overall, cold-exacerbated mutant defects may result in a sufficient excess of Na+ influx to produce repetitive firing and myotonia. In the light of previous reports, our data point to functional as well as phenotypic differences between mutations of conserved S4-S5 residues in domains II and III of the human skeletal muscle Na+ channel.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 49 条
[1]   Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5 [J].
Bendahhou, S ;
Cummins, TR ;
Kula, RW ;
Fu, YH ;
Ptácek, LJ .
NEUROLOGY, 2002, 58 (08) :1266-1272
[2]   INACTIVATION OF SODIUM CHANNEL .1. SODIUM CURRENT EXPERIMENTS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :549-566
[3]   Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans [J].
Bouhours, M ;
Sternberg, D ;
Davoine, CS ;
Ferrer, X ;
Willer, JC ;
Fontaine, B ;
Tabti, N .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 554 (03) :635-647
[4]   FUNCTIONAL EXPRESSION OF SODIUM-CHANNEL MUTATIONS IDENTIFIED IN FAMILIES WITH PERIODIC PARALYSIS [J].
CANNON, SC ;
STRITTMATTER, SM .
NEURON, 1993, 10 (02) :317-326
[5]   Sodium channel defects in myotonia and periodic paralysis [J].
Cannon, SC .
ANNUAL REVIEW OF NEUROSCIENCE, 1996, 19 :141-164
[6]   Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses [J].
Cannon, SC .
KIDNEY INTERNATIONAL, 2000, 57 (03) :772-779
[7]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[8]   SODIUM-CHANNEL MUTATIONS IN PARAMYOTONIA-CONGENITA UNCOUPLE INACTIVATION FROM ACTIVATION [J].
CHAHINE, M ;
GEORGE, AL ;
ZHOU, M ;
JI, S ;
SUN, WJ ;
BARCHI, RL ;
HORN, R .
NEURON, 1994, 12 (02) :281-294
[9]   SODIUM-CHANNEL GATING IN CLONAL PITUITARY-CELLS - THE INACTIVATION STEP IS NOT VOLTAGE DEPENDENT [J].
COTA, G ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1989, 94 (02) :213-232
[10]   FUNCTIONAL CONSEQUENCES OF A NA+ CHANNEL MUTATION CAUSING HYPERKALEMIC PERIODIC PARALYSIS [J].
CUMMINS, TR ;
ZHOU, JY ;
SIGWORTH, FJ ;
UKOMADU, C ;
STEPHAN, M ;
PTACEK, LJ ;
AGNEW, WS .
NEURON, 1993, 10 (04) :667-678