Lithium lanthanum titanates: A review

被引:759
作者
Stramare, S [1 ]
Thangadurai, V [1 ]
Weppner, W [1 ]
机构
[1] Univ Kiel, Fac Engn, Chair Sensors & Solid State Ion, D-24143 Kiel, Germany
关键词
D O I
10.1021/cm0300516
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To date, the highest bulk lithium ion-conducting solid electrolyte is the perovskite (ABO(3))-type lithium lanthanum titanate (LLT) Li(3x)La((2/3)-x)rectangle((1/3)-2x)TiO(3) (0 < x < 0.16) and its related structure materials. The x approximate to 0.1 member exhibits conductivity of 1 x 10(-3) S/cm at room temperature with an activation energy of 0.40 eV. The conductivity is comparable to that of commonly used polymer/liquid electrolytes. The ionic conductivity of LLT mainly depends on the size of the A-site ion cation (e.g., La or rare earth, alkali or alkaline earth), lithium and vacancy concentration, and the nature of the B-O bond. For example, replacement of La by other rare earth elements with smaller ionic radii than that of La decreases the lithium ion conductivity, while partial substitution of La by Sr (larger ionic radii than that of La) slightly increases the lithium ion conductivity. The high lithium ion conductivity of LLT is considered to be due to the large concentration of A-site vacancies, and the motion of lithium by a vacancy mechanism through the wide square planar bottleneck between the A sites. It is considered that BO6/TiO6 octahedra tilting facilitate the lithium ion mobility in the perovskite structure. The actual mechanism of lithium ion conduction is not yet clearly understood. In this paper, we review the structural properties, electrical conductivity, and electrochemical characterization of LLT and its related materials.
引用
收藏
页码:3974 / 3990
页数:17
相关论文
共 171 条
[91]   ELECTRICAL CONDUCTIVITY OF SOLID AND MOLTEN LITHIUM SULFATE [J].
KVIST, A ;
LUNDEN, A .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1965, A 20 (02) :235-&
[92]   IONIC-CONDUCTIVITY OF OXIDES WITH GENERAL FORMULA LIXLN1/3NB1-XTIXO3 (LN = LA, ND) [J].
LATIE, L ;
VILLENEUVE, G ;
CONTE, D ;
LEFLEM, G .
JOURNAL OF SOLID STATE CHEMISTRY, 1984, 51 (03) :293-299
[93]   Evaluation of the AC response of Li-electrolytic perovskites Li-0.5(Ln(x)La(0.5-x))TiO3 (Ln=Nd, Gd) in conjunction with their crystallographic and microstructural characteristics [J].
Lee, JS ;
Yoo, KS ;
Kim, TS ;
Jung, HJ .
SOLID STATE IONICS, 1997, 98 (1-2) :15-26
[94]   Non-Debye conductivity relaxation in the non-Arrhenius Li0.5La0.5TiO3 fast ionic conductor.: A nuclear magnetic resonance and complex impedance study [J].
Leon, C ;
Santamaria, J ;
Paris, MA ;
Sanz, J ;
Ibarra, J ;
Varez, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 235 :753-760
[95]   Correlated ion hopping in single-crystal yttria-stabilized zirconia [J].
Leon, C ;
Lucia, ML ;
Santamaria, J .
PHYSICAL REVIEW B, 1997, 55 (02) :882-887
[96]   Non-Arrhenius conductivity in the fast ionic conductor Li0.05La0.5TiO3: Reconciling spin-lattice and electrical-conductivity relaxations [J].
Leon, C ;
Santamaria, J ;
Paris, MA ;
Sanz, J ;
Ibarra, J ;
Torres, LM .
PHYSICAL REVIEW B, 1997, 56 (09) :5302-5305
[97]   Electrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li0.5La0.5TiO3 [J].
Leon, C ;
Lucia, ML ;
Santamaria, J ;
Paris, MA ;
Sanz, J ;
Varez, A .
PHYSICAL REVIEW B, 1996, 54 (01) :184-189
[98]   Origin of constant loss in ionic conductors [J].
León, C ;
Rivera, A ;
Várez, A ;
Sanz, J ;
Santamaria, J ;
Ngai, KL .
PHYSICAL REVIEW LETTERS, 2001, 86 (07) :1279-1282
[99]   Analytical distributions of relaxation times for the description of electrical conductivity relaxation in ionic conductors [J].
Leon, C ;
Lucia, ML ;
Santamaria, J .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1997, 75 (05) :629-638
[100]  
MACDONALD JR, 1987, IMPEDANCE SPECTROSCO, pCH2