Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator

被引:24
作者
Pataki, Andras [1 ]
Greengard, Leslie [1 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Collision operator; Plasma physics; Poisson equation; Biharmonic equation; Fast solvers; FOKKER-PLANCK; POISSON SOLVER; EQUATION; PLASMA; SIMULATION; SCHEME;
D O I
10.1016/j.jcp.2011.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe a new class of fast solvers for separable elliptic partial differential equations in cylindrical coordinates (r,0,z) with free-space radiation conditions. By combining integral equation methods in the radial variable r with Fourier methods in 0 and z, we show that high-order accuracy can be achieved in both the governing potential and its derivatives. A weak singularity arises in the Fourier transform with respect to z that is handled with special purpose quadratures. We show how these solvers can be applied to the evaluation of the Coulomb collision operator in kinetic models of ionized gases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7840 / 7852
页数:13
相关论文
共 35 条
[1]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory [J].
Abel, I. G. ;
Barnes, M. ;
Cowley, S. C. ;
Dorland, W. ;
Schekochihin, A. A. .
PHYSICS OF PLASMAS, 2008, 15 (12)
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[3]   Hybrid Gauss-trapezoidal quadrature rules [J].
Alpert, BK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1551-1584
[4]  
[Anonymous], 2000, SIAM
[5]  
[Anonymous], 1984, Methods of Numerical Integration
[6]  
Bellan P. M., 2006, FUNDAMENTALS PLASMA
[7]  
BIRSDSALL CK, 1985, PLASMA PHYS VIA COMP
[8]   DIFFERENTIAL FORM OF THE COLLISION INTEGRAL FOR A RELATIVISTIC PLASMA [J].
BRAAMS, BJ ;
KARNEY, CFF .
PHYSICAL REVIEW LETTERS, 1987, 59 (16) :1817-1820
[9]   A HYBRID METHOD FOR ACCELERATED SIMULATION OF COULOMB COLLISIONS IN A PLASMA [J].
Caflisch, Russel ;
Wang, Chiaming ;
Dimarco, Giacomo ;
Cohen, Bruce ;
Dimits, Andris .
MULTISCALE MODELING & SIMULATION, 2008, 7 (02) :865-887
[10]   An implicit energy-conservative 2D Fokker-Planck algorithm -: I.: Difference scheme [J].
Chacón, L ;
Barnes, DC ;
Knoll, DA ;
Miley, GH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) :618-653