Dynamic Reconfiguration of Structural and Functional Connectivity Across Core Neurocognitive Brain Networks with Development

被引:412
作者
Uddin, Lucina Q. [1 ]
Supekar, Kaustubh S. [1 ]
Ryali, Srikanth [1 ]
Menon, Vinod [1 ,2 ,3 ]
机构
[1] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Program Neurosci, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RESTING-STATE NETWORKS; MAGNETIC-RESONANCE IMAGES; DEFAULT-MODE NETWORK; DIFFUSION-TENSOR MRI; WHITE-MATTER; CAUSAL CONNECTIVITY; PREFRONTAL CORTEX; GRANGER CAUSALITY; COGNITIVE CONTROL; FIBER PATHWAYS;
D O I
10.1523/JNEUROSCI.4465-11.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain structural and functional development, throughout childhood and into adulthood, underlies the maturation of increasingly sophisticated cognitive abilities. High-level attentional and cognitive control processes rely on the integrity of, and dynamic interactions between, core neurocognitive networks. The right fronto-insular cortex (rFIC) is a critical component of a salience network (SN) that mediates interactions between large-scale brain networks involved in externally oriented attention [central executive network (CEN)] and internally oriented cognition [default mode network (DMN)]. How these systems reconfigure and mature with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. Using functional and effective connectivity measures applied to fMRI data, we examine interactions within and between the SN, CEN, and DMN. We find that functional coupling between key network nodes is stronger in adults than in children, as are causal links emanating from the rFIC. Specifically, the causal influence of the rFIC on nodes of the SN and CEN was significantly greater in adults compared with children. Notably, these results were entirely replicated on an independent dataset of matched children and adults. Developmental changes in functional and effective connectivity were related to structural connectivity along these links. Diffusion tensor imaging tractography revealed increased structural integrity in adults compared with children along both within-and between-network pathways associated with the rFIC. These results suggest that structural and functional maturation of rFIC pathways is a critical component of the process by which human brain networks mature during development to support complex, flexible cognitive processes in adulthood.
引用
收藏
页码:18578 / 18589
页数:12
相关论文
共 79 条
[1]   Spatial transformations of diffusion tensor magnetic resonance images [J].
Alexander, DC ;
Pierpaoli, C ;
Basser, PJ ;
Gee, JC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) :1131-1139
[2]   Diffusion tensor imaging using single-shot SENSE-EPI [J].
Bammer, R ;
Auer, M ;
Keeling, SL ;
Augustin, M ;
Stables, LA ;
Prokesch, RW ;
Stollberger, R ;
Moseley, ME ;
Fazekas, F .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :128-136
[3]   White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study [J].
Barnea-Goraly, N ;
Menon, V ;
Eckert, M ;
Tamm, L ;
Bammer, R ;
Karchemskiy, A ;
Dant, CC ;
Reiss, AL .
CEREBRAL CORTEX, 2005, 15 (12) :1848-1854
[4]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[5]  
2-O
[6]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[7]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[8]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[9]   Large-scale brain networks in cognition: emerging methods and principles [J].
Bressler, Steven L. ;
Menon, Vinod .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (06) :277-290
[10]  
Bunge SA, 2009, NEUROIMAGING IN DEVELOPMENTAL CLINICAL NEUROSCIENCE, P22, DOI 10.1017/CBO9780511757402.005