The cathode materials, LiMn2O4, LiAl0.05Mn1.95O4 and LiAl0.05Mn1.95O3.95F0.05 were firstly prepared by a simple solution-based eel method using the mixture of acetate and ethanol as the chelating agent. The synthesized samples were investigated by X-ray diffraction, scanning electronic microscope and differential and thermal analysis. The as-prepared powders were used as positive materials for lithium-ion battery, whose discharge capacity and cycle voltammogram properties were examined. The results revealed that LiAl0.05Mn1.95O3.95F0.05 synthesized by the solution-based gel method had higher initial capacity than LiAl0.05Mn1.95O4 and better capacity retention rate (92%) than that of LiAl0.05Mn1.95O4 and LiMn2O4, which revealed that Al and F dual-doped LiMn2O4 Could gain better electrochemical properties of LiMn2O4 than only the Al-doped LiMn2O4. (c) 2005 Elsevier Inc. All rights reserved.