A unique spacer domain of synaptotagmin IV is essential for Golgi localization

被引:28
作者
Fukuda, M
Ibata, K
Mikoshiba, K
机构
[1] RIKEN, Brain Sci Inst, Dev Neurobiol Lab, Wako, Saitama 3510198, Japan
[2] Univ Tokyo, Inst Med Sci, Dept Basic Med Sci, Div Mol Neurobiol,Minato Ku, Tokyo, Japan
关键词
C2; domain; exocytosis; glycosylation; Golgi; immediate early genes; synaptotagmin;
D O I
10.1046/j.1471-4159.2001.00266.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca2+-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IV DeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform.
引用
收藏
页码:730 / 740
页数:11
相关论文
共 39 条
[1]   Synaptotagamin I and IV define distinct populations of neuronal transport vesicles [J].
Berton, F ;
Cornet, V ;
Iborra, C ;
Garrido, J ;
Dargent, B ;
Fukuda, M ;
Seagar, M ;
Marquèze, B .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (04) :1294-1302
[2]   The subcellular localizations of atypical synaptotagmins III and VI -: Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles [J].
Butz, S ;
Fernandez-Chacon, R ;
Schmitz, F ;
Jahn, R ;
Südhof, TC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18290-18296
[3]   Alternative splicing of synaptotagmins involving transmembrane exon skipping [J].
Craxton, M ;
Goedert, M .
FEBS LETTERS, 1999, 460 (03) :417-422
[4]   Expression of synaptotagmin I or II promotes neurite outgrowth in PC12 cells [J].
Fukuda, M ;
Mikoshiba, K .
NEUROSCIENCE LETTERS, 2000, 295 (1-2) :33-36
[5]  
Fukuda M, 2000, J BIOL CHEM, V275, P28180
[6]   The function of inositol high polyphosphate binding proteins [J].
Fukuda, M ;
Mikoshiba, K .
BIOESSAYS, 1997, 19 (07) :593-603
[7]   Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X [J].
Fukuda, M ;
Kanno, E ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (44) :31421-31427
[8]   A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain - Implications for distinct functions of the two isoforms [J].
Fukuda, M ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (44) :31428-31434
[9]   Phospholipid composition dependence of Ca2+-dependent phospholipid binding to the C2A domain of synaptotagmin IV [J].
Fukuda, M ;
Kojima, T ;
Mikoshiba, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (14) :8430-8434
[10]  
FUKUDA M, 1994, J BIOL CHEM, V269, P29206