Particle Size Effect of Anatase TiO2 Nanocrystals for Lithium-Ion Batteries

被引:69
作者
Kang, J. W. [1 ]
Kim, D. H. [1 ]
Mathew, V. [1 ]
Lim, J. S. [1 ]
Gim, J. H. [1 ]
Kimz, J. [1 ]
机构
[1] Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea
关键词
NANOSTRUCTURED MATERIALS; ELECTRODE MATERIALS; NEGATIVE-ELECTRODE; RUTILE TIO2; INSERTION; NANOTUBES; STORAGE;
D O I
10.1149/1.3518420
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanocrystalline anatase TiO2 was synthesized from a triethylene glycol solution of titanium isopropoxide [Ti(O-iPr)(4)] by refluxing at 270 degrees C for 12 h. The thermal stability and effect of particle size on the corresponding electrochemical performances were investigated by annealing the prepared sample at various temperatures; namely, 300, 400, 500, 600, 700, 800, and 900 degrees C. The X-ray diffraction patterns of the samples clearly revealed that the maximum temperature for the formation of pure anatase phase was 700 degrees C beyond which the presence of rutile polymorph became significant. The field emission-transmission electron microscopy images of the obtained samples showed uniform and considerably dispersed particles with fairly homogeneous distributions and average sizes of 8-50 nm. The electrochemical measurements indicated considerable charge-discharge capacities devoid of major capacity fading during extended cycles, due to their electrochemically beneficial highly crystalline traits, nanosized particles, and uniform distribution. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3518420] All rights reserved.
引用
收藏
页码:A59 / A62
页数:4
相关论文
共 35 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]  
[Anonymous], 2009, IN CRYST STRUCT DAT
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A139-A143
[5]   LITHIUM INTERCALATION CELLS WITHOUT METALLIC LITHIUM - MOO2/LICOO2 AND WO2/LICOO2 [J].
AUBORN, JJ ;
BARBERIO, YL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) :638-641
[6]   Nano-ionics in the context of lithium batteries [J].
Balaya, P. ;
Bhattacharyya, A. J. ;
Jamnik, J. ;
Zhukovskii, Yu. F. ;
Kotomin, E. A. ;
Maier, J. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :171-178
[7]   HISTORICAL DEVELOPMENT OF SECONDARY LITHIUM BATTERIES [J].
BRANDT, K .
SOLID STATE IONICS, 1994, 69 (3-4) :173-183
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[10]   Potassium titanate nanowires: Structure, growth, and optical properties [J].
Du, GH ;
Chen, Q ;
Han, PD ;
Yu, Y ;
Peng, LM .
PHYSICAL REVIEW B, 2003, 67 (03)