Orbit complexity and data compression

被引:13
作者
Galatolo, S [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
topological dynamical systems; information; coding; entropy; orbit complexity;
D O I
10.3934/dcds.2001.7.477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider data compression algorithms as a tool to get an approximate measure for the quantity of information contained in a string. By this it is possible to give a notion of orbit complexity for topological dynamical systems. In compact ergodic dynamical systems, entropy is almost everywhere equal to orbit complexity. The use of compression algorithms allows a direct estimation of the information content of the orbits.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 18 条
[11]   SPORADICITY - BETWEEN PERIODIC AND CHAOTIC DYNAMICAL BEHAVIORS [J].
GASPARD, P ;
WANG, XJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4591-4595
[12]  
KHINCHIN AI, MATH FDN INFORMATION
[13]   INTERMITTENCY, SELF-SIMILARITY AND 1-F SPECTRUM IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
MANNEVILLE, P .
JOURNAL DE PHYSIQUE, 1980, 41 (11) :1235-1243
[14]   ALGORITHMIC COMPLEXITY OF POINTS IN DYNAMICAL-SYSTEMS [J].
WHITE, HS .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :807-830
[15]   THE SLIDING-WINDOW LEMPEL-ZIV ALGORITHM IS ASYMPTOTICALLY OPTIMAL [J].
WYNER, AD ;
ZIV, J .
PROCEEDINGS OF THE IEEE, 1994, 82 (06) :872-877
[16]   UNIVERSAL ALGORITHM FOR SEQUENTIAL DATA COMPRESSION [J].
ZIV, J ;
LEMPEL, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (03) :337-343
[17]   COMPRESSION OF INDIVIDUAL SEQUENCES VIA VARIABLE-RATE CODING [J].
ZIV, J ;
LEMPEL, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) :530-536
[18]  
ZVORKIN AK, 1970, RUSS MATH SURV, V25