A minimum spanning tree algorithm with Inverse Ackermann type complexity

被引:177
作者
Chazelle, B [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
theory; graphs; matroids; minimum spanning trees;
D O I
10.1145/355541.355562
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A deterministic algorithm for computing a minimum spanning tree of a connected graph is presented. Its running time is O(m alpha (m, n)), where alpha is the classical functional inverse of Ackermann's function and n (respectively, in) is the number of vertices (respectively, edges). The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric assumptions on the edge costs.
引用
收藏
页码:1028 / 1047
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 1926, Prace Mor. Prfrodoved. Spol. V Brne III
[2]   THE COMPLEXITY OF COMPUTING PARTIAL SUMS OFF-LINE [J].
Chazelle, Bernard ;
Rosenberg, Burton .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (01) :33-45
[3]  
Chazelle Bernard, 2000, J ACM, V47
[4]  
Cheriton D., 1976, SIAM Journal on Computing, V5, P724, DOI 10.1137/0205051
[5]   VERIFICATION AND SENSITIVITY ANALYSIS OF MINIMUM SPANNING-TREES IN LINEAR TIME [J].
DIXON, B ;
RAUCH, M ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1992, 21 (06) :1184-1192
[6]   SURPASSING THE INFORMATION-THEORETIC BOUND WITH FUSION TREES [J].
FREDMAN, ML ;
WILLARD, DE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 47 (03) :424-436
[7]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[8]   EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING-TREES IN UNDIRECTED AND DIRECTED-GRAPHS [J].
GABOW, HN ;
GALIL, Z ;
SPENCER, T ;
TARJAN, RE .
COMBINATORICA, 1986, 6 (02) :109-122
[9]  
GRAHAM RL, 1985, ANN HIST COMPUT, V7, P43
[10]   A RANDOMIZED LINEAR-TIME ALGORITHM TO FIND MINIMUM SPANNING-TREES [J].
KARGER, DR ;
KLEIN, PN ;
TARJAN, RE .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (02) :321-328