Two-dimensional tensor product variational formulation

被引:130
作者
Nishino, T [1 ]
Hieida, Y
Okunishi, K
Maeshima, N
Akutsu, Y
Gendiar, A
机构
[1] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Appl Phys, Suita, Osaka 5650871, Japan
[3] Niigata Univ, Dept Phys, Niigata 9502181, Japan
[4] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
[5] Slovak Acad Sci, Inst Phys, SK-84228 Bratislava, Slovakia
来源
PROGRESS OF THEORETICAL PHYSICS | 2001年 / 105卷 / 03期
关键词
D O I
10.1143/PTP.105.409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a numerical self-consistent method for 3D classical lattice models, which optimizes the variational state written as a two-dimensional product of tensors. The variational partition function is calculated using the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The numerical efficiency of the method is exemplified in its application to the 3D Ising model.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 24 条
[1]  
Baxter R. J., 1982, Exactly Solved Models in Statistical Mechanics, P363
[2]   DIMERS ON A RECTANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) :650-&
[4]   EXACT ANTIFERROMAGNETIC GROUND-STATES OF QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
EUROPHYSICS LETTERS, 1989, 10 (07) :633-637
[5]  
Fannes M., 1995, COMMUN MATH PHYS, V174, P477
[6]   CRITICAL-BEHAVIOR OF THE 3-DIMENSIONAL ISING-MODEL - A HIGH-RESOLUTION MONTE-CARLO STUDY [J].
FERRENBERG, AM ;
LANDAU, DP .
PHYSICAL REVIEW B, 1991, 44 (10) :5081-5091
[7]   Numerical renormalization approach to two-dimensional quantum antiferromagnets with valence-bond-solid type ground state [J].
Hieida, Yasuhiro ;
Okunishi, Kouichi ;
Akutsu, Yasuhiro .
NEW JOURNAL OF PHYSICS, 1999, 1 :7.1-7.17
[8]  
Kramers HA, 1941, PHYS REV, V60, P263, DOI 10.1103/PhysRev.60.263
[9]  
MARTINDELGADO MA, CONDMAT0009474
[10]   Quantum phase transition in spin-3/2 systems on the hexagonal lattice - optimum ground state approach [J].
Niggemann, H ;
Klumper, A ;
Zittartz, J .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (01) :103-110