Two-dimensional tensor product variational formulation

被引:130
作者
Nishino, T [1 ]
Hieida, Y
Okunishi, K
Maeshima, N
Akutsu, Y
Gendiar, A
机构
[1] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Appl Phys, Suita, Osaka 5650871, Japan
[3] Niigata Univ, Dept Phys, Niigata 9502181, Japan
[4] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
[5] Slovak Acad Sci, Inst Phys, SK-84228 Bratislava, Slovakia
来源
PROGRESS OF THEORETICAL PHYSICS | 2001年 / 105卷 / 03期
关键词
D O I
10.1143/PTP.105.409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a numerical self-consistent method for 3D classical lattice models, which optimizes the variational state written as a two-dimensional product of tensors. The variational partition function is calculated using the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The numerical efficiency of the method is exemplified in its application to the 3D Ising model.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 24 条
[11]   Ground state phase diagram of a spin-2 antiferromagnet on the square lattice [J].
Niggemann, H ;
Klümper, A ;
Zittartz, J .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (01) :15-19
[12]   Corner transfer matrix renormalization group method [J].
Nishino, T ;
Okunishi, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (04) :891-894
[13]   Corner transfer matrix algorithm for classical renormalization group [J].
Nishino, T ;
Okunishi, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) :3040-3047
[14]   Self-consistent tensor product variational approximation for 3D classical models [J].
Nishino, T ;
Okunishi, K ;
Hieida, Y ;
Maeshima, N ;
Akutsu, Y .
NUCLEAR PHYSICS B, 2000, 575 (03) :504-512
[15]  
NISHINO T, 1999, J PHYS SOC JPN, V68, P3066
[16]   Kramers-Wannier approximation for the 3D Ising model [J].
Okunishi, K ;
Nishino, T .
PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (03) :541-548
[17]   Crystal statistics I A two-dimensional model with an order-disorder transition [J].
Onsager, L .
PHYSICAL REVIEW, 1944, 65 (3/4) :117-149
[18]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[19]  
PESCHEL I, 1999, LECT NOTES PHYSICS, V528
[20]   Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group [J].
Rommer, S ;
Ostlund, S .
PHYSICAL REVIEW B, 1997, 55 (04) :2164-2181