Domain number distribution in the Nonequilibrium Ising model

被引:25
作者
Ben-Naim, E [1 ]
Krapivsky, PL
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
coarsening; kinetic Ising model; Potts model; scaling; persistence;
D O I
10.1023/B:JOSS.0000033243.27556.99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study domain distributions in the one-dimensional Ising model subject to zero-temperature Glauber and Kawasaki dynamics. The survival probability of a domain, S(t) similar to t(-psi), and an unreacted domain, O-1(t) similar to t(-delta), are characterized by two independent nontrivial exponents. We develop an independent interval approximation that provides close estimates for many characteristics of the domain length and number distributions including the scaling exponents.
引用
收藏
页码:583 / 601
页数:19
相关论文
共 55 条
[51]   THE EVOLUTION OF CELLULAR STRUCTURES [J].
STAVANS, J .
REPORTS ON PROGRESS IN PHYSICS, 1993, 56 (06) :733-789
[52]   First-passage exponent in two-dimensional soap froth [J].
Tam, WY ;
Zeitak, R ;
Szeto, KY ;
Stavans, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1588-1591
[53]   Statistical mechanics - Persistence pays off in defining history of diffusion [J].
Watson, A .
SCIENCE, 1996, 274 (5289) :919-920
[54]   THE POTTS-MODEL [J].
WU, FY .
REVIEWS OF MODERN PHYSICS, 1982, 54 (01) :235-268
[55]  
YURKE B, 1997, PHYS REV E, V56, P40