Chaotic attractors with discrete planar symmetries

被引:50
作者
Carter, NC [1 ]
Eagles, RL [1 ]
Grimes, SM [1 ]
Hahn, AC [1 ]
Reiter, CA [1 ]
机构
[1] Lafayette Coll, Dept Math, Easton, PA 18042 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0960-0779(97)00157-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaotic behavior is known to be compatible with symmetry and illustrations are constructed using functions equivariant with respect to the desired symmetries. Earlier investigations determined families of equivariant functions for a few of the discrete symmetry groups in the plane; those results are extended to all the discrete symmetry groups of the plane. This includes consideration of the all the frieze and two-dimensional crystallographic groups. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2031 / 2054
页数:24
相关论文
共 26 条
[1]  
[Anonymous], 1992, Chaos and Fractals
[2]   SYMMETRY GROUPS OF ATTRACTORS [J].
ASHWIN, P ;
MELBOURNE, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :59-78
[3]   Symmetric attractors in three-dimensional space [J].
Brisson, GF ;
Gartz, KM ;
McCune, BJ ;
OBrien, KP ;
Reiter, CA .
CHAOS SOLITONS & FRACTALS, 1996, 7 (07) :1033-&
[4]  
CARTER N, 1997, P APL 97 CDROM TOR O
[5]  
FIELD M, 1992, SYMMETRY CHAOS
[6]  
Field M., 1995, NOTICES AMS, V42, P240
[7]   RAPID GENERATION OF STRANGE ATTRACTORS WITH THE EUGENE GENETIC ALGORITHM [J].
GOERTZEL, B .
COMPUTERS & GRAPHICS, 1995, 19 (01) :151-156
[8]  
GRUNBAUM B, 1989, TILING SPATTERNS
[9]  
IVERSON KE, 1995, J INTRO DICT
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO