Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films

被引:366
作者
Suyatma, NE [1 ]
Tighzert, L [1 ]
Copinet, A [1 ]
机构
[1] Univ Reims, ESIEC, CERME, F-51686 Reims, France
关键词
chitosan; plasticizers; edible film; mechanical properties; surface properties;
D O I
10.1021/jf048790+
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Chitosan films were plasticized with four hydrophilic compounds, namely, glycerol (GLY), ethylene glycol (EG), poly(ethylene glycol) (PEG), and propylene glycol (PG). Our objective was to investigate the effect of plasticizers on mechanical and surface properties of chitosan films. The stability of plasticized films was observed by storage for 3 and 20 weeks in an environmental chamber at 50 +/- 5% RH and 23 +/- 2 degrees C. Plasticization improves the chitosan ductility, and typical stress-strain curves of plasticized films have the features of ductile materials, except the film made with 5% PG that exhibits as a brittle polymer and shows an antiplasticization effect. In most cases, the elongation of plasticized films decreases with the storage time, which might be due to the recrystallization of chitosan and the loss of moisture and plasticizer from the film matrix. Although at the beginning the mechanical properties of films made with PG, at high plasticizer concentration, are comparable to those of films made with EG, GLY, and PEG, their stability is poor and they tend to become brittle materials. The surface properties, analyzed by contact angle measurement, reveal that plasticization increases film hydrophilicity. It is found that GLY and PEG are more suitable as chitosan plasticizers than EG and PG by taking into account their plasticization efficiency and storage stability. Furthermore, a plasticizer concentration of 20% (w/w) with GLY or PEG seemingly is sufficient to obtain flexible chitosan film with a good stability for 5 months of storage.
引用
收藏
页码:3950 / 3957
页数:8
相关论文
共 52 条
[1]   Improvement of the mechanical properties of chitosan films by the addition of poly(ethylene oxide) [J].
Alexeev, VL ;
Kelberg, EA ;
Evmenenko, GA ;
Bronnikov, SV .
POLYMER ENGINEERING AND SCIENCE, 2000, 40 (05) :1211-1215
[2]   Plasticized starch/tunicin whiskers nanocomposites.: 1.: Structural analysis [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2000, 33 (22) :8344-8353
[3]   Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose [J].
Arvanitoyannis, I ;
Kolokuris, I ;
Nakayama, A ;
Yamamoto, N ;
Aiba, S .
CARBOHYDRATE POLYMERS, 1997, 34 (1-2) :9-19
[4]   Mechanical and barrier properties of edible chitosan films as affected by composition and storage [J].
Butler, BL ;
Vergano, PJ ;
Testin, RF ;
Bunn, JM ;
Wiles, JL .
JOURNAL OF FOOD SCIENCE, 1996, 61 (05) :953-&
[5]   Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage [J].
Caner, C ;
Vergano, PJ ;
Wiles, JL .
JOURNAL OF FOOD SCIENCE, 1998, 63 (06) :1049-1053
[6]   Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols [J].
Cervera, MF ;
Karjalainen, M ;
Airaksinen, S ;
Rantanen, J ;
Krogars, K ;
Heinämäki, J ;
Colarte, AI ;
Yliruusi, J .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 58 (01) :69-76
[7]   Solid-state characterization of chitosans derived from lobster chitin [J].
Cervera, MF ;
Heinämäki, J ;
Räsänen, M ;
Maunu, SL ;
Karjalainen, M ;
Acosta, OMN ;
Colarte, AI ;
Yliruusi, J .
CARBOHYDRATE POLYMERS, 2004, 58 (04) :401-408
[8]   Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation [J].
Chen, CS ;
Liau, WY ;
Tsai, GJ .
JOURNAL OF FOOD PROTECTION, 1998, 61 (09) :1124-1128
[9]   Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative [J].
Chen, MC ;
Yeh, GHC ;
Chiang, BH .
JOURNAL OF FOOD PROCESSING AND PRESERVATION, 1996, 20 (05) :379-390
[10]   Miscibility and morphology of chiral semicrystalline poly-(R)-(3-hydroxybutyrate)/chitosan and poly-(R)-(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan blends studied with DSC, 1H T1 and T1ρ CRAMPS [J].
Cheung, MK ;
Wan, KPY ;
Yu, PH .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (05) :1253-1258