Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition

被引:269
作者
Poodt, Paul [1 ]
Cameron, David C. [2 ]
Dickey, Eric [3 ]
George, Steven M. [4 ,5 ]
Kuznetsov, Vladimir [6 ]
Parsons, Gregory N. [7 ]
Roozeboom, Fred [1 ,8 ]
Sundaram, Ganesh [9 ]
Vermeer, Ad [10 ]
机构
[1] TNO, NL-5600 HE Eindhoven, Netherlands
[2] Lappeenranta Univ Technol, Adv Surface Technol Res Lab ASTRaL, FI-50100 Mikkeli, Finland
[3] Lotus Appl Technol, Hillsboro, OR 97006 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA
[6] Levitech BV, NL-1322 AP Almere, Netherlands
[7] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[8] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[9] Cambridge NanoTech Inc, Cambridge, MA 02139 USA
[10] SoLayTec BV, NL-5652 AM Eindhoven, Netherlands
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2012年 / 30卷 / 01期
关键词
TRANSISTORS; FIBERS;
D O I
10.1116/1.3670745
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is a technique capable of producing ultrathin conformal films with atomic level control over thickness. A major drawback of ALD is its low deposition rate, making ALD less attractive for applications that require high throughput processing. An approach to overcome this drawback is spatial ALD, i.e., an ALD mode where the half-reactions are separated spatially instead of through the use of purge steps. This allows for high deposition rate and high throughput ALD without compromising the typical ALD assets. This paper gives a perspective of past and current developments in spatial ALD. The technology is discussed and the main players are identified. Furthermore, this overview highlights current as well as new applications for spatial ALD, with a focus on photovoltaics and flexible electronics. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3670745]
引用
收藏
页数:11
相关论文
共 58 条
[11]  
Dickey ER, 2009, 52 ANN TECHN C P SOC, P720
[12]   Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head [J].
Fitzpatrick, P. Ryan ;
Gibbs, Zachary M. ;
George, Steven M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01)
[13]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[14]   Surface Chemistry for Molecular Layer Deposition of Organic and Hybrid Organic-Inorganic Polymers [J].
George, Steven M. ;
Yoon, Byunghoon ;
Dameron, Arrelaine A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (04) :498-508
[15]   A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches [J].
Gordon, RG ;
Hausmann, D ;
Kim, E ;
Shepard, J .
CHEMICAL VAPOR DEPOSITION, 2003, 9 (02) :73-78
[16]  
Granneman Ernst, 2008, Materials Science Forum, V573-574, P375, DOI 10.4028/www.scientific.net/MSF.573-574.375
[17]  
Granneman E. H. A., 2011, U.S. patent, Patent No. [2011/0124199, 20110124199]
[18]  
GRANNEMAN EHA, 2010, P 27 EU PVSEC UNPUB
[19]   Batch ALD: Characteristics, comparison with single wafer ALD, and examples [J].
Granneman, Ernst ;
Fischer, Pamela ;
Pierreux, Dieter ;
Terhorst, Herbert ;
Zagwijn, Peter .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (22-23) :8899-8907
[20]  
Hamedi M, 2007, NAT MATER, V6, P357, DOI [10.1038/nmat1884, 10.1038/nma11884]