Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods

被引:43
作者
Berrone, S [1 ]
机构
[1] Politecn Torino, Dipartimento Ingn Aeronaut & Spaziale, I-10129 Turin, Italy
关键词
a posteriori error estimators; adaptive mesh-refinement techniques; Navier-Stokes equations; bounds on the effectivity index;
D O I
10.1016/S0045-7825(00)00327-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have derived a residual-based a posteriori error estimator for a stabilized finite element discretization of the stationary incompressible Navier-Stokes equations with general boundary conditions. An adaptive algorithm based on this error estimator is discussed and tested on some analytical and physical problems. When possible we study precisely the behaviour of the effectivity index. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:4435 / 4455
页数:21
相关论文
共 28 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   ANALYSIS OF THE EFFICIENCY OF AN A POSTERIORI ERROR ESTIMATOR FOR LINEAR TRIANGULAR FINITE-ELEMENTS [J].
BABUSKA, I ;
DURAN, R ;
RODRIGUEZ, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :947-964
[4]  
BERRONE S, 1999, 7 DIP MAT POL TOR
[5]   A RELATIONSHIP BETWEEN STABILIZED FINITE-ELEMENT METHODS AND THE GALERKIN METHOD WITH BUBBLE FUNCTIONS [J].
BREZZI, F ;
BRISTEAU, MO ;
FRANCA, LP ;
MALLET, M ;
ROGE, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 96 (01) :117-129
[6]  
BREZZI F, 1991, MIXED HIBRID FINITE
[7]   Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning [J].
Canuto, C ;
Russo, A ;
van Kemenade, V .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) :65-83
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Eriksson K., 1995, Acta Numerica, V4, P105
[10]   STABILIZED FINITE-ELEMENT METHODS .2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
FRANCA, LP ;
FREY, SL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :209-233