Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolite studies

被引:34
作者
Zguris, JC
Itle, LJ
Hayes, D
Pishko, MV [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Mat Sci, University Pk, PA 16802 USA
关键词
microsomes; hydrogels; microreactor; cytochrome P450;
D O I
10.1007/s10544-005-1589-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the area of drug discovery, high-speed synthesis has increased the number of drug candidates produced. These potential drugs need to be evaluated for their adsorption, distribution, metabolism, elimination, and toxicology (ADMET) properties as early in the drug development stage as possible. Previously, a potential drug's ADMET properties have been found out by using monolayer cell cultures and live animals. These methods can be costly, time-intensive, and impractical for screening the large amount of potential drugs created by combinatorial chemistry. A quick, small, inexpensive, and highly parallel device would be desirable to determine a drug candidate's properties (i.e., metabolism of the drug). Here we fabricate a microfluidic device entrapping human microsomes within poly(ethylene) glycol hydrogels thereby generating an in situ microreactor to assess a drug candidate's metabolic properties that can be coupled to analysis equipment. We show that microsomes can be entrapped without the loss of enzymatic activity during photopolymerization. Additionally, a microreactor utilizing hepatocytes was also created for comparison with the microsome microreactor.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 44 条
[1]  
Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
[2]  
2-D
[3]  
BENETTON S, 2003, CHIP BASED P450 DRUG
[4]   Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J].
Berger, J ;
Reist, M ;
Mayer, JM ;
Felt, O ;
Peppas, NA ;
Gurny, R .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (01) :19-34
[5]   An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons [J].
Brandon, EFA ;
Raap, CD ;
Meijerman, I ;
Beijnen, JH ;
Schellens, JHM .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2003, 189 (03) :233-246
[6]   Integrated microfluidic system enabling (bio)chemical reactions with on-line MALDI-TOF mass spectrometry [J].
Brivio, M ;
Fokkens, RH ;
Verboom, W ;
Reinhoudt, DN ;
Tas, NR ;
Goedbloed, M ;
van den Berg, A .
ANALYTICAL CHEMISTRY, 2002, 74 (16) :3972-3976
[7]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[8]   A HIGHLY SENSITIVE TOOL FOR THE ASSAY OF CYTOCHROME-P450 ENZYME-ACTIVITY IN RAT, DOG AND MAN - DIRECT FLUORESCENCE MONITORING OF THE DEETHYLATION OF 7-ETHOXY-4-TRIFLUOROMETHYLCOUMARIN [J].
BUTERS, JTM ;
SCHILLER, CD ;
CHOU, RC .
BIOCHEMICAL PHARMACOLOGY, 1993, 46 (09) :1577-1584
[9]   Description of a 96-well plate assay to measure cytochrome P4503A inhibition in human liver microsomes using a selective fluorescent probe [J].
Chauret, N ;
Tremblay, N ;
Lackman, RL ;
Gauthier, JY ;
Silva, JM ;
Marois, J ;
Yergey, JA ;
Nicoll-Griffith, DA .
ANALYTICAL BIOCHEMISTRY, 1999, 276 (02) :215-226
[10]   Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques [J].
Chiou, CH ;
Lee, GB ;
Hsu, HT ;
Chen, PW ;
Liao, PC .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 86 (2-3) :280-286