Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast

被引:70
作者
Crisp, RJ
Pollington, A
Galea, C
Jaron, S
Yamaguchi-Iwai, Y
Kaplan, J
机构
[1] Univ Utah, Sch Med, Dept Pathol, Div Cell Biol & Immunol, Salt Lake City, UT 84132 USA
[2] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA
[3] Kyoto Univ, Grad Sch Biostudies, Dept Appl Mol Biol, Sakyo Ku, Kyoto 6068502, Japan
关键词
D O I
10.1074/jbc.M307229200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Yeast are capable of modifying their metabolism in response to environmental changes. We investigated the activity of the oxygen-dependent high-affinity iron uptake system of Saccharomyces cerevisiae under conditions of heme depletion. We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon. Decreased transcription of the iron regulon was not due to decreased expression of the iron sensitive transcriptional activator Aft1p. Expression of the constitutively active allele AFT1-1(up) was unable to induce transcription of the high affinity iron uptake system in heme-depleted cells. We demonstrated that under heme-depleted conditions, Aft1p-GFP was able to cycle normally between the nucleus and cytosol in response to cytosolic iron. Despite the inability to induce transcription under low iron conditions, chromatin immunoprecipitation demonstrated that Aft1p binds to the FET3 promoter in the absence of heme. Finally, we provide evidence that under heme-depleted conditions, yeast are able to regulate mitochondrial iron uptake and do not accumulate pathologic iron concentrations, as is seen when iron-sulfur cluster synthesis is disrupted.
引用
收藏
页码:45499 / 45506
页数:8
相关论文
共 36 条
[1]   Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A) [J].
Allikmets, R ;
Raskind, WH ;
Hutchinson, A ;
Schueck, ND ;
Dean, M ;
Koeller, DM .
HUMAN MOLECULAR GENETICS, 1999, 8 (05) :743-749
[2]  
APARICIO O, 2003, CURRENT PROTOCOLS MO, V61
[3]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[4]   Molecular biology of iron acquisition in Saccharomyces cerevisiae [J].
Askwith, CC ;
deSilva, D ;
Kaplan, J .
MOLECULAR MICROBIOLOGY, 1996, 20 (01) :27-34
[5]   The yeast transcriptome in aerobic and hypoxic conditions:: effects of hap1, rox1, rox3 and srb10 deletions [J].
Becerra, M ;
Lombardía-Ferreira, LJ ;
Hauser, NC ;
Hoheisel, JD ;
Tizon, B ;
Cerdán, ME .
MOLECULAR MICROBIOLOGY, 2002, 43 (03) :545-555
[6]  
Bekri S, 2000, BLOOD, V96, P3256
[7]   Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia [J].
Bradley, JL ;
Blake, JC ;
Chamberlain, S ;
Thomas, PK ;
Cooper, JM ;
Schapira, AHV .
HUMAN MOLECULAR GENETICS, 2000, 9 (02) :275-282
[8]   CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation [J].
Chen, OS ;
Kaplan, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7626-7632
[9]   Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis [J].
Chen, OS ;
Hemenway, S ;
Kaplan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12321-12326
[10]   A non-essential function for yeast frataxin in iron-sulfur cluster assembly [J].
Duby, G ;
Foury, F ;
Ramazzotti, A ;
Herrmann, J ;
Lutz, T .
HUMAN MOLECULAR GENETICS, 2002, 11 (21) :2635-2643