Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS

被引:394
作者
Beck, Hylke E. [1 ]
Pan, Ming [1 ]
Roy, Tirthankar [1 ]
Weedon, Graham P. [2 ]
Pappenberger, Florian [3 ]
van Dijk, Albert I. J. M. [4 ]
Huffman, George J. [5 ]
Adler, Robert F. [6 ]
Wood, Eric F. [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
[2] JCHMR, Met Off, Maclean Bldg,Benson Lane, Crowmarsh Gifford, Oxon, England
[3] European Ctr Medium Range Weather Forecasts ECMWF, Reading, Berks, England
[4] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[6] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
关键词
TIME SATELLITE PRECIPITATION; ERA-INTERIM REANALYSIS; OF-THE-ART; GLOBAL PRECIPITATION; DATA ASSIMILATION; EXTREME-PRECIPITATION; PASSIVE MICROWAVE; COMPLEX TERRAIN; DAY-1; IMERG; DATA SETS;
D O I
10.5194/hess-23-207-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
New precipitation (P) datasets are released regularly, following innovations in weather forecasting models, satellite retrieval methods, and multi-source merging techniques. Using the conterminous US as a case study, we evaluated the performance of 26 gridded (sub-)daily P datasets to obtain insight into the merit of these innovations. The evaluation was performed at a daily timescale for the period 2008-2017 using the Kling-Gupta efficiency (KGE), a performance metric combining correlation, bias, and variability. As a reference, we used the high-resolution (4 km) Stage-IV gauge-radar P dataset. Among the three KGE components, the P datasets performed worst overall in terms of correlation (related to event identification). In terms of improving KGE scores for these datasets, improved P totals (affecting the bias score) and improved distribution of P intensity (affecting the variability score) are of secondary importance. Among the 11 gauge-corrected P datasets, the best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for gauge reporting times. Several uncorrected P datasets outperformed gauge-corrected ones. Among the 15 uncorrected P datasets, the best performance was obtained by the ERA5-HRES fourth-generation reanalysis, reflecting the significant advances in earth system modeling during the last decade. The (re) analyses generally performed better in winter than in summer, while the opposite was the case for the satellite-based datasets. IMERGHH V05 performed substantially better than TMPA-3B42RT V7, attributable to the many improvements implemented in the IMERG satellite P retrieval algorithm. IMERGHH V05 outperformed ERA5-HRES in regions dominated by convective storms, while the opposite was observed in regions of complex terrain. The ERA5-EDA ensemble average exhibited higher correlations than the ERA5-HRES deterministic run, highlighting the value of ensemble modeling. The WRF regional convection-permitting climate model showed considerably more accurate P totals over the mountainous west and performed best among the uncorrected datasets in terms of variability, suggesting there is merit in using high-resolution models to obtain climatological P statistics. Our findings provide some guidance to choose the most suitable P dataset for a particular application.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 145 条
[31]   Assessing objective techniques for gauge-based analyses of global daily precipitation [J].
Chen, Mingyue ;
Shi, Wei ;
Xie, Pingping ;
Silva, Viviane B. S. ;
Kousky, Vernon E. ;
Higgins, R. Wayne ;
Janowiak, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D4)
[32]   Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States [J].
Chen, Sheng ;
Hong, Yang ;
Gourley, Jonathan J. ;
Huffman, George J. ;
Tian, Yudong ;
Cao, Qing ;
Yong, Bin ;
Kirstetter, Pierre-Emmanuel ;
Hu, Junjun ;
Hardy, Jill ;
Li, Zhe ;
Khan, Sadiq I. ;
Xue, Xianwu .
WATER RESOURCES RESEARCH, 2013, 49 (12) :8174-8186
[33]   A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling [J].
Cheng, Shuiyuan ;
Li, Li ;
Chen, Dongsheng ;
Li, Jianbing .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2012, 112 :404-414
[34]   SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture [J].
Ciabatta, Luca ;
Massari, Christian ;
Brocca, Luca ;
Gruber, Alexander ;
Reimer, Christoph ;
Hahn, Sebastian ;
Paulik, Christoph ;
Dorigo, Wouter ;
Kidd, Richard ;
Wagner, Wolfgang .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (01) :267-280
[35]  
Coiffier J., 2011, Fundamentals of numerical weather prediction
[36]   Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States [J].
Daly, Christopher ;
Halbleib, Michael ;
Smith, Joseph I. ;
Gibson, Wayne P. ;
Doggett, Matthew K. ;
Taylor, George H. ;
Curtis, Jan ;
Pasteris, Phillip P. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2008, 28 (15) :2031-2064
[37]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[38]   Skill improvement from increased ensemble size and model diversity [J].
DelSole, Timothy ;
Nattala, Jyothi ;
Tippett, Michael K. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (20) :7331-7342
[39]   ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions [J].
Dorigo, Wouter ;
Wagner, Wolfgang ;
Albergel, Clement ;
Albrecht, Franziska ;
Balsamo, Gianpaolo ;
Brocca, Luca ;
Chung, Daniel ;
Ertl, Martin ;
Forkel, Matthias ;
Gruber, Alexander ;
Haas, Eva ;
Hamer, Paul D. ;
Hirschi, Martin ;
Ikonen, Jaakko ;
de Jeu, Richard ;
Kidd, Richard ;
Lahoz, William ;
Liu, Yi Y. ;
Miralles, Diego ;
Mistelbauer, Thomas ;
Nicolai-Shaw, Nadine ;
Parinussa, Robert ;
Pratola, Chiara ;
Reimer, Christoph ;
van der Schalie, Robin ;
Seneviratne, Sonia I. ;
Smolander, Tuomo ;
Lecomte, Pascal .
REMOTE SENSING OF ENVIRONMENT, 2017, 203 :185-215
[40]  
Doyle JD, 1997, MON WEATHER REV, V125, P1465, DOI 10.1175/1520-0493(1997)125<1465:TIOMOO>2.0.CO