Gap junctions modulate survival-promoting effects of fibroblast growth factor-2 on cultured midbrain dopaminergic neurons

被引:16
作者
Leung, DS [1 ]
Unsicker, K [1 ]
Reuss, B [1 ]
机构
[1] Univ Heidelberg, IZN, Neuroanat & Interdisciplinary Ctr Neurosci, D-69120 Heidelberg, Germany
关键词
D O I
10.1006/mcne.2001.1002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) support survival of dopaminergic midbrain neurons. Neurons are coupled by gap junctions, propagating metabolites and intracellular second messengers possibly mediating growth factor effects. We asked, therefore, whether gap junctions influence the survival-promoting effects of FGF-2 and GDNF. RT-PCR, Western blotting, and immunocytochemistry demonstrate that FGF-2 but not GDNF upregulates cx43 mRNA and immunoreactivity in rat embryonic day 14 midbrain cultures, whereas cx26, cx32, and cx45 were unchanged. In addition, functional coupling as assayed by the spread of neurobiotin was increased by FGF-2. Furthermore, the gap junction blocker oleamide abolished survival-promoting effects of FGF-2 on dopaminergic midbrain neurons. Together, these results support a direct role of gap junction communication for survival-promoting effects of FGF-2 on dopaminergic midbrain neurons, making gap junction communication a substantial parameter for neuron survival.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 59 条
[1]   PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: Regulation of proliferation and differentiation by multiple intracellular signaling pathways [J].
Baron, W ;
Metz, B ;
Bansal, R ;
Hoekstra, D ;
de Vries, H .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (03) :314-329
[2]   EXPRESSION OF ACIDIC AND BASIC FIBROBLAST GROWTH-FACTORS IN THE SUBSTANTIA-NIGRA OF RAT, MONKEY, AND HUMAN [J].
BEAN, AJ ;
ELDE, R ;
CAO, YH ;
OELLIG, C ;
TAMMINGA, C ;
GOLDSTEIN, M ;
PETTERSSON, RF ;
HOKFELT, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (22) :10237-10241
[3]   Gap junctions as electrical synapses [J].
Bennett, MVL .
JOURNAL OF NEUROCYTOLOGY, 1997, 26 (06) :349-366
[4]  
Bieger S, 1996, CHEM FACTORS NEURAL, P339
[5]   Biological roles of fibroblast growth factor-2 [J].
Bikfalvi, A ;
Klein, S ;
Pintucci, G ;
Rifkin, DB .
ENDOCRINE REVIEWS, 1997, 18 (01) :26-45
[6]   Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide [J].
Boger, DL ;
Patterson, JE ;
Guan, XJ ;
Cravatt, BF ;
Lerner, RA ;
Gilula, NB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :4810-4815
[7]  
Braak H, 1995, J NEURAL TRANSM-SUPP, P15
[8]   INTERCELLULAR CALCIUM SIGNALING VIA GAP-JUNCTIONS IN GLIOMA-CELLS [J].
CHARLES, AC ;
NAUS, CCG ;
ZHU, DG ;
KIDDER, GM ;
DIRKSEN, ER ;
SANDERSON, MJ .
JOURNAL OF CELL BIOLOGY, 1992, 118 (01) :195-201
[9]   Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides [J].
Cravatt, BF ;
Giang, DK ;
Mayfield, SP ;
Boger, DL ;
Lerner, RA ;
Gilula, NB .
NATURE, 1996, 384 (6604) :83-87
[10]   CHEMICAL CHARACTERIZATION OF A FAMILY OF BRAIN LIPIDS THAT INDUCE SLEEP [J].
CRAVATT, BF ;
PROSPEROGARCIA, O ;
SIUZDAK, G ;
GILULA, NB ;
HENRIKSEN, SJ ;
BOGER, DL ;
LERNER, RA .
SCIENCE, 1995, 268 (5216) :1506-1509