The aging brain: The cognitive reserve hypothesis and hominid evolution

被引:47
作者
Allen, JS [1 ]
Bruss, J [1 ]
Damasio, H [1 ]
机构
[1] Univ Iowa, Coll Med, Div Cognit Neurosci & Behav Neurol, Dept Neurol, Iowa City, IA 52242 USA
关键词
D O I
10.1002/ajhb.20439
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
Compared to other primates, humans live a long time and have large brains. Recent theories of the evolution of human life history stages (grandmother hypothesis, intergenerational transfer of information) lend credence to the notion that selection for increased life span and menopause has occurred in hominid evolution, despite the reduction in the force of natural selection operating on older, especially post-reproductive, individuals. Theories that posit the importance (in an inclusive fitness sense) of the survival of older individuals require them to maintain a reasonably high level of cognitive function (e.g., memory, communication). Patterns of brain aging and factors associated with healthy brain aging should be relevant to this issue. Recent neuroimaging research suggests that, in healthy aging, human brain volume (gray and white matter) is well-maintained until at least 60 years of age; cognitive function also shows only nonsignificant declines at this age. The maintenance of brain volume and cognitive performance is consistent with the idea of a significant post- or late-reproductive life history stage. A clinical model, "the cognitive reserve hypothesis," proposes that both increased brain volume and enhanced cognitive ability may contribute to healthy brain aging, reducing the likelihood of developing dementia. Selection for increased brain size and increased cognitive ability in hominid evolution may therefore have been important in selection for increased lifespan in the context of intergenerational social support networks.
引用
收藏
页码:673 / 689
页数:17
相关论文
共 95 条
[71]  
2-K
[72]   A critique of the grandmother hypotheses: Old and new [J].
Peccei, JS .
AMERICAN JOURNAL OF HUMAN BIOLOGY, 2001, 13 (04) :434-452
[73]  
Quartz SR, 1997, BEHAV BRAIN SCI, V20, P537
[74]   Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume [J].
Raz, N ;
Gunning-Dixon, F ;
Head, D ;
Rodrigue, KM ;
Williamson, A ;
Acker, JD .
NEUROBIOLOGY OF AGING, 2004, 25 (03) :377-396
[75]  
Raz N., 2001, ENCY LIFE SCI
[76]  
Raz N, 1999, HDB AGING COGNITION, P1
[77]  
ROACH J, 2003, TARZANS CHEETAS LIFE
[78]  
Rose MR, 1998, AM J HUM BIOL, V10, P409, DOI 10.1002/(SICI)1520-6300(1998)10:4<409::AID-AJHB2>3.0.CO
[79]  
2-B
[80]   THE AGE AT ONSET OF ALZHEIMERS-DISEASE AND AN INTRACRANIAL AREA MEASUREMENT - A RELATIONSHIP [J].
SCHOFIELD, PW ;
MOSESSON, RE ;
STERN, Y ;
MAYEUX, R .
ARCHIVES OF NEUROLOGY, 1995, 52 (01) :95-98