Two SCA (stigma/style cysteine-rich adhesin) Isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity

被引:31
作者
Chae, Keun
Zhang, Kangling
Zhang, Li
Morikis, Dimitrios
Kim, Sun Tae
Mollet, Jean-Claude
de la Rosa, Noelle
Tan, Kimberly
Lord, Elizabeth M. [1 ]
机构
[1] Univ Calif Riverside, Ctr Plant Cell Biol, Dept Bot & Plant Sci, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Mass Spectrometry Facil, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Bioengn, Riverside, CA 92521 USA
[5] Gyeongsang Natl Univ, Environm Biotechnol Natl Core Res Ctr, Jinju 660701, South Korea
[6] Univ Rouen, CNRS, UMR 6037, IRFPM 23,Lab Glycobiol & Transports Chez Vegetaux, F-76821 Mont St Aignan, France
关键词
D O I
10.1074/jbc.M703997200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lily pollen tubes grow adhering to an extracellular matrix produced by the transmitting tract epidermis in a hollow style. SCA, a small (similar to 9.4 kDa), basic protein plus low esterified pectin from this extracellular matrix are involved in the pollen tube adhesion event. The mode of action for this adhesion event is unknown. We partially separated three SCA iso-forms from the lily stigma in serial size exclusion column fractions (SCA1, 9370 Da; SCA2, 9384 Da; SCA3, 9484 Da). Peptide sequencing analysis allowed us to determine two amino acid variations in SCA3, compared with SCA1. For SCA2, however, there are more sequence variations yet to be identified. Our structural homology and molecular dynamics modeling results show that SCA isoforms have the plant nonspecific lipid transfer protein-like structure: a globular shape of the orthogonal 4-helix bundle architecture, four disulfide bonds, an internal hydrophobic and solvent-inaccessible cavity, and a long C-terminal tail. The Ala(71) in SCA3, replacing the Gly(71) in SCA1, has no predictable effect on structure. The Arg(26) in SCA3, replacing the Gly(26) in SCA1, is predicted to cause structural changes that result in a significantly reduced volume for the internal hydrophobic cavity in SCA3. The volume of the internal cavity fluctuates slightly during the molecular dynamics simulation, but overall, SCA1 displays a larger cavity than SCA3. SCA1 displays higher activity than SCA3 in the in vitro pollen tube adhesion assay. No differences were found between the two SCAs in a binding assay with pectin. The larger size of the hydrophobic cavity in SCA1 correlates with its higher adhesion activity.
引用
收藏
页码:33845 / 33858
页数:14
相关论文
共 66 条
[1]   Molecular dynamics: Survey of methods for simulating the activity of proteins [J].
Adcock, Stewart A. ;
McCammon, J. Andrew .
CHEMICAL REVIEWS, 2006, 106 (05) :1589-1615
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
[Anonymous], 2004, Protein structure and function
[4]   The determinants of pK(a)s in proteins [J].
Antosiewicz, J ;
McCammon, JA ;
Gilson, MK .
BIOCHEMISTRY, 1996, 35 (24) :7819-7833
[5]   Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana [J].
Arondel, V ;
Vergnolle, C ;
Cantrel, C ;
Kader, JC .
PLANT SCIENCE, 2000, 157 (01) :1-12
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   ISOLATION OF A CDNA CLONE FOR SPINACH LIPID TRANSFER PROTEIN AND EVIDENCE THAT THE PROTEIN IS SYNTHESIZED BY THE SECRETORY PATHWAY [J].
BERNHARD, WR ;
THOMA, S ;
BOTELLA, J ;
SOMERVILLE, CR .
PLANT PHYSIOLOGY, 1991, 95 (01) :164-170
[8]   NEW METHOD FOR QUANTITATIVE-DETERMINATION OF URONIC ACIDS [J].
BLUMENKR.N ;
ASBOEHAN.G .
ANALYTICAL BIOCHEMISTRY, 1973, 54 (02) :484-489
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   A POTENT ANTIMICROBIAL PROTEIN FROM ONION SEEDS SHOWING SEQUENCE HOMOLOGY TO PLANT LIPID TRANSFER PROTEINS [J].
CAMMUE BRUNO, PA ;
THEVISSEN, K ;
HENDRIKS, M ;
EGGERMONT, K ;
GODERIS, IJ ;
PROOST, P ;
VANDAMME, J ;
OSBORN, RW ;
GUERBETTE, F ;
KADER, JC ;
BROEKAERT, WF .
PLANT PHYSIOLOGY, 1995, 109 (02) :445-455