Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna

被引:73
作者
LeBlanc, GA [1 ]
Mu, XY [1 ]
Rider, CV [1 ]
机构
[1] N Carolina State Univ, Dept Toxicol, Raleigh, NC 27695 USA
关键词
androgens; crustacean; Daphnia magna; development; embryo; invertebrate; 4-nonylphenol; steroids; testosterone; toxicity;
D O I
10.2307/3434824
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Laboratory studies have suggested that some alkylphenols and pesticides elicit developmental toxicity to crustaceans. The purpose of the present study was to evaluate the possibility that the alkylphenol degradation product 4-nonylphenol is embryotoxic to the crustacean Daphnia magna through its known ability to interfere with the metabolic elimination of testosterone. Direct exposure of maternal daphnids to testosterone caused developmental abnormalities in neonates that consisted of partial arrest of early embryonic development and abnormalities in shell spine and first antennae development. Exposure of maternal daphnids to concentrations of 4-nonylphenol also produced developmental abnormalities though the profile of abnormalities was distinct from that observed throughout the testosterone concentration-response curve. Thus, 4-nonylphenol is a developmental toxicant in daphnids, but its toxicity is not consistent with that elicited by elevated testosterone accumulation. Further experiments demonstrated that testosterone was directly toxic to developing embryos, and the maternal organism can serve as the vector for this toxicity. In contrast, neither direct embryo exposure nor early maternal exposure to 4-nonylphenol elicited embryotoxicity consistent with that observed during continuous maternal and gestational exposure. Thus, 4-nonylphenol is not directly embryotoxic at these exposure levels, but rather toxicity is mediated by maternal influences during gestation. The threshold concentration for the occurrence of developmental abnormalities (similar to 44 mug/L) indicates that typical environmental concentrations of 4-nonylphenol pose no imminent hazard with respect to developmental toxicity. However, these effects do occur at sufficiently low levels to warrant evaluation of the relative susceptibility of other crustacean species to this previously uncharacterized mode of toxicity.
引用
收藏
页码:1133 / 1138
页数:6
相关论文
共 23 条
[1]  
Baldwin RC, 1997, CLIN NEUROSCI, V4, P16
[2]   IN-VIVO BIOTRANSFORMATION OF TESTOSTERONE BY PHASE-I AND PHASE-II DETOXICATION ENZYMES AND THEIR MODULATION BY 20-HYDROXYECDYSONE IN DAPHNIA-MAGNA [J].
BALDWIN, WS ;
LEBLANC, GA .
AQUATIC TOXICOLOGY, 1994, 29 (1-2) :103-117
[3]   ISOLATION AND IDENTIFICATION OF TESTOSTERONE FROM THE SERUM AND TESTES OF THE AMERICAN LOBSTER (HOMARUS-AMERICANUS) [J].
BURNS, BG ;
SANGALANG, GB ;
FREEMAN, HC ;
MCMENEMY, M .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 1984, 54 (03) :429-432
[4]   THE EFFECTS OF NONYLPHENOL ON DAPHNIA-MAGNA [J].
COMBER, MHI ;
WILLIAMS, TD ;
STEWART, KM .
WATER RESEARCH, 1993, 27 (02) :273-276
[5]  
FAIRES NJ, 1989, GEN COMP ENDOCR, V4, P199
[6]  
Gad S. C., 1998, STAT EXPT DESIGN TOX
[7]  
Goulden C.E., 1984, P167
[8]  
GRUMBACH MM, 1981, TXB ENDOCRINOLOGY, P312
[9]  
KASTHUTCHESON K, IN PRESS ENV TOXICOL
[10]  
LeBlanc GA, 2000, ENVIRONMENTAL ENDOCRINE DISRUPTERS: AN EVOLUTIONARY PERSPECTIVE, P126