Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery

被引:126
作者
Hassoun, Jusef [1 ]
Sun, Yang-Kook [2 ]
Scrosati, Bruno [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
[2] Hanyang Univ, Dept Energy Engn, Seoul 133792, South Korea
关键词
Lithium sulfide; Cathode; Polymer lithium-ion battery; SN-C COMPOSITE; SULFUR CATHODE; PERFORMANCE; CELL; MEMBRANES; ENERGY;
D O I
10.1016/j.jpowsour.2010.06.093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we investigate the electrochemical behavior of a new type of carbon-lithium sulfide composite electrode. Results based on cyclic voltammetry, charge (lithium removal)-discharge (lithium acceptance) demonstrate that this electrode has a good performance in terms of reversibility, cycle life and coulombic efficiency. XRD analysis performed in situ in a lithium cell shows that lithium sulfide can be converted into sulfur during charge and re-converted back into sulfide during the following discharge process. We also show that this electrochemical process can be efficiently carried out in polymer electrolyte lithium cells and thus, that the Li2S-C composite can be successfully used as cathode for the development of novel types of rechargeable lithium-ion sulfur batteries where the reactive and unsafe lithium metal anode is replaced by a reliable, high capacity tin-carbon composite and the unstable organic electrolyte solution is replaced by a composite gel polymer membrane that is safe, highly conductive and able to control dendrite growth across the cell. This new Sn-C/Li2S polymer battery operates with a capacity of 600 mAh g(-1) and with an average voltage of 2V, this leading to a value of energy density amounting to 1200 Wh kg(-1). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:343 / 348
页数:6
相关论文
共 23 条
  • [1] AHN HJ, 2009, LITHIUM SULFUR CELLS, P155
  • [2] Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries
    Appetecchi, GB
    Romagnoli, P
    Scrosati, B
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (06) : 281 - 284
  • [3] Hot-pressed, dry, composite, PEO-based electrolyte membranes I. Ionic conductivity characterization
    Appetecchi, GB
    Croce, F
    Hassoun, J
    Scrosati, B
    Salomon, M
    Cassel, F
    [J]. JOURNAL OF POWER SOURCES, 2003, 114 (01) : 105 - 112
  • [4] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [5] Rechargeable lithium sulfur battery - II. Rate capability and cycle characteristics
    Cheon, SE
    Ko, KS
    Cho, JH
    Kim, SW
    Chin, EY
    Kim, HT
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) : A800 - A805
  • [6] Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes
    Choi, Jae-Won
    Kim, Jin-Kyu
    Cheruvally, Gouri
    Ahn, Jou-Hyeon
    Ahn, Hyo-Jun
    Kim, Ki-Won
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (05) : 2075 - 2082
  • [7] Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries
    Derrien, Gaelle
    Hassoun, Jusef
    Panero, Stefania
    Scrosati, Bruno
    [J]. ADVANCED MATERIALS, 2007, 19 (17) : 2336 - +
  • [8] A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance
    Hassoun, Jusef
    Derrien, Gaelle
    Panero, Stefania
    Scrosati, Bruno
    [J]. ADVANCED MATERIALS, 2008, 20 (16) : 3169 - 3175
  • [9] A High-Performance Polymer Tin Sulfur Lithium Ion Battery
    Hassoun, Jusef
    Scrosati, Bruno
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (13) : 2371 - 2374
  • [10] All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material
    Hayashi, Akitoshi
    Ohtsubo, Ryoji
    Ohtomo, Takamasa
    Mizuno, Fuminori
    Tatsumisago, Masahiro
    [J]. JOURNAL OF POWER SOURCES, 2008, 183 (01) : 422 - 426