Rapid synthesis of aligned zinc oxide nanowires

被引:121
作者
Unalan, Husnu Emrah [1 ]
Hiralal, Pritesh [1 ]
Rupesinghe, Nalin [1 ]
Dalal, Sharvari [1 ]
Milne, William I. [1 ]
Amaratunga, Gehan A. J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
关键词
D O I
10.1088/0957-4484/19/25/255608
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A solution growth approach for zinc oxide (ZnO) nanowires is highly appealing because of the low growth temperature and possibility for large area synthesis. Reported reaction times for ZnO nanowire synthesis, however, are long, spanning from several hours to days. In this work, we report on the rapid synthesis of ZnO nanowires on various substrates (such as poly(ethylene terephthalate) (PET), silicon and glass) using a commercially available microwave oven. The average growth rate of our nanowires is determined to be as high as 100 nm min(-1), depending on the microwave power. Transmission electron microscopy analysis revealed a defect-free single-crystalline lattice of the nanowires. A detailed analysis of the growth characteristics of ZnO nanowires as functions of growth time and microwave power is reported. Our work demonstrates the possibility of a fast synthesis route using microwave heating for nanomaterials synthesis.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition [J].
Anthony, Savarimuthu Philip ;
Lee, Jeong In ;
Kim, Jin Kon .
APPLIED PHYSICS LETTERS, 2007, 90 (10)
[2]   High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes [J].
Cha, S. N. ;
Jang, J. E. ;
Choi, Y. ;
Amaratunga, G. A. J. ;
Ho, G. W. ;
Welland, M. E. ;
Hasko, D. G. ;
Kang, D-J. ;
Kim, J. M. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[3]   Single-nanowire electrically driven lasers [J].
Duan, XF ;
Huang, Y ;
Agarwal, R ;
Lieber, CM .
NATURE, 2003, 421 (6920) :241-245
[4]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[5]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236
[6]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[7]   Solution-grown zinc oxide nanowires [J].
Greene, Lori E. ;
Yuhas, Benjamin D. ;
Law, Matt ;
Zitoun, David ;
Yang, Peidong .
INORGANIC CHEMISTRY, 2006, 45 (19) :7535-7543
[8]   Microwave energy for mineral treatment processes - a brief review [J].
Haque, KE .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1999, 57 (01) :1-24
[9]   Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods [J].
Hu, XL ;
Zhu, YJ ;
Wang, SW .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 88 (2-3) :421-426
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899