WANDs of the black ring

被引:42
作者
Pravda, V [1 ]
Pravdová, A [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague, Czech Republic
关键词
Weyl aligned null direction; WAND; Petrov type;
D O I
10.1007/s10714-005-0110-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Necessary conditions for various algebraic types of the Weyl tensor in higher dimensions are determined. These conditions are then used to find Weyl aligned null directions for the black ring solution. It is shown that the black ring solution is algebraically special, of type I-i, while locally on the horizon the type is II. One exceptional subclass - the Myers-Perry solution - is of type D.
引用
收藏
页码:1277 / 1287
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1998, BLACK HOLE PHYS BASI
[2]   Generic isolated horizons and their applications [J].
Ashtekar, A ;
Beetle, C ;
Dreyer, O ;
Fairhurst, S ;
Krishnan, B ;
Lewandowski, J ;
Wisniewski, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3564-3567
[3]   Isolated horizons: Hamiltonian evolution and the first law [J].
Ashtekar, A ;
Fairhurst, S ;
Krishnan, B .
PHYSICAL REVIEW D, 2000, 62 (10)
[4]   Vanishing scalar invariant spacetimes in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (23) :5519-5542
[5]   Classification of the Weyl tensor in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (07) :L35-L41
[6]  
Elvang H, 2003, J HIGH ENERGY PHYS
[7]   A rotating black ring solution in five dimensions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[8]   Particle and light motion in a space-time of a five-dimensional rotating black hole [J].
Frolov, V ;
Stojkovic, D .
PHYSICAL REVIEW D, 2003, 68 (06)
[9]   Quasi-local rotating black holes in higher dimension: geometry [J].
Lewandowski, J ;
Pawlowski, T .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) :1573-1598
[10]   Alignment and algebraically special tensors in Lorentzian geometry [J].
Milson, R ;
Coley, A ;
Pravda, V ;
Pravdová, A .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (01) :41-61