Sesquiterpene emissions from vegetation: a review

被引:202
作者
Duhl, T. R. [1 ,2 ]
Helmig, D. [2 ]
Guenther, A. [1 ]
机构
[1] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA
[2] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
D O I
10.5194/bg-5-761-2008
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute ( e. g., seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation ( from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emissions studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s-1000s of ng g(DW)(-1)h(-1)) . Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have been studied so far, and ambiguities regarding controls over emissions. This underscores the need for standardized experimental protocols, better characterization of disturbance-induced emissions, screening of dominant plant species, and the collection of multiple replicates from several individuals within a given species or genus as well as a better understanding of seasonal dependencies of SQT emissions in order to improve the representation of SQT emission rates.
引用
收藏
页码:761 / 777
页数:17
相关论文
共 53 条
[1]   Factors affecting volatile emissions of intact potato plants, Solanum tuberosum:: Variability of quantities and stability of ratios [J].
Agelopoulos, NG ;
Chamberlain, K ;
Pickett, JA .
JOURNAL OF CHEMICAL ECOLOGY, 2000, 26 (02) :497-511
[2]   HYDROCARBON EMISSIONS FROM NATURAL VEGETATION IN CALIFORNIA SOUTH-COAST-AIR-BASIN [J].
AREY, J ;
CROWLEY, DE ;
CROWLEY, M ;
RESKETO, M ;
LESTER, J .
ATMOSPHERIC ENVIRONMENT, 1995, 29 (21) :2977-2988
[3]   Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides):: cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1 [J].
Arimura, G ;
Huber, DPW ;
Bohlmann, J .
PLANT JOURNAL, 2004, 37 (04) :603-616
[4]   Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J].
Atkinson, R ;
Arey, J .
ATMOSPHERIC ENVIRONMENT, 2003, 37 :S197-S219
[5]   Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers [J].
Chen, F ;
Tholl, D ;
D'Auria, JC ;
Farooq, A ;
Pichersky, E ;
Gershenzon, J .
PLANT CELL, 2003, 15 (02) :481-494
[6]   Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes [J].
Ciccioli, P ;
Brancaleoni, E ;
Frattoni, M ;
Di Palo, V ;
Valentini, R ;
Tirone, G ;
Seufert, G ;
Bertin, N ;
Hansen, U ;
Csiky, O ;
Lenz, R ;
Sharma, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D7) :8077-8094
[7]   Caterpillar-induced nocturnal plant volatiles repel conspecific females [J].
De Moraes, CM ;
Mescher, MC ;
Tumlinson, JH .
NATURE, 2001, 410 (6828) :577-580
[8]   Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure [J].
Degenhardt, David C. ;
Lincoln, David E. .
JOURNAL OF CHEMICAL ECOLOGY, 2006, 32 (04) :725-743
[9]   MECHANISM OF MONOTERPENE VOLATILIZATION IN SALVIA-MELLIFERA [J].
DEMENT, WA ;
TYSON, BJ ;
MOONEY, HA .
PHYTOCHEMISTRY, 1975, 14 (12) :2555-2557
[10]   The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers [J].
Dudareva, N ;
Andersson, S ;
Orlova, I ;
Gatto, N ;
Reichelt, M ;
Rhodes, D ;
Boland, W ;
Gershenzon, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :933-938