New insights into erythrocyte membrane organization and microelasticity

被引:49
作者
Discher, DE
机构
[1] Univ Penn, Inst Med & Engn, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Appl Sci & Engn, Philadelphia, PA 19104 USA
关键词
D O I
10.1097/00062752-200003000-00008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The erythrocyte membrane's ability to withstand the stresses of circulation has its origins in various levels of structural organization. Central to this membrane's structure-function relationships is a quasi-two-dimensional meshwork of spectrin-actin-protein 4.1 that imparts a resilence to the overlying plasma membrane. New insights into the nonlinear microelasticity of this substructure are being provided by experiments that range from elegant atomic force microscopy tests of single spectrin chains to patterned photobleaching of the micropipette-deformed network. Breakthroughs in atomic level structure determinations are further complemented by emerging biophysical studies of transgenically engineered mice lacking specific erythrocyte membrane proteins. Recent theoretical efforts (computational approaches most notably) also have begun to correlate molecular scale aspects of structure with mechanical measures. All of this recent activity in the biophysics of erythrocyte structure-function is certain to challenge and refine some of the most basic tenets in cell membrane structure-function. (C) 2000 Lippincott Williams & Wilkins, Inc.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 17 条
[1]   Temperature transitions of protein properties in human red blood cells [J].
Artmann, GM ;
Kelemen, C ;
Porst, D ;
Büldt, G ;
Chien, S .
BIOPHYSICAL JOURNAL, 1998, 75 (06) :3179-3183
[2]   Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer [J].
Blackman, SM ;
Piston, DW ;
Beth, AH .
BIOPHYSICAL JOURNAL, 1998, 75 (02) :1117-1130
[3]   COMPUTER-SIMULATION OF A MODEL NETWORK FOR THE ERYTHROCYTE CYTOSKELETON [J].
BOAL, DH .
BIOPHYSICAL JOURNAL, 1994, 67 (02) :521-529
[4]   Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models [J].
Boey, SK ;
Boal, DH ;
Discher, DE .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1573-1583
[5]   Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells [J].
Cho, MR ;
Knowles, DW ;
Smith, BL ;
Moulds, JJ ;
Agre, P ;
Mohandas, N ;
Golan, DE .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :1136-1144
[6]   Calculation of a gap restoration in the membrane skeleton of the red blood cell:: Possible role for myosin II in local repair [J].
Cibert, C ;
Prulière, G ;
Lacombe, C ;
Deprette, C ;
Cassoly, R .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1153-1165
[7]   MOLECULAR MAPS OF RED-CELL DEFORMATION - HIDDEN ELASTICITY AND IN-SITU CONNECTIVITY [J].
DISCHER, DE ;
MOHANDAS, N ;
EVANS, EA .
SCIENCE, 1994, 266 (5187) :1032-1035
[8]   Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration [J].
Discher, DE ;
Boal, DH ;
Boey, SK .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1584-1597
[9]   Structures of two repeats of spectrin suggest models of flexibility [J].
Grum, VL ;
Li, DN ;
MacDonald, RI ;
Mondragón, A .
CELL, 1999, 98 (04) :523-535
[10]   A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers [J].
Hénon, S ;
Lenormand, G ;
Richert, A ;
Gallet, F .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :1145-1151