Quantization of the Reissner-Nordstrom black hole

被引:7
作者
Breitenlohner, P
Maison, D
Hollmann, H
机构
[1] Max Planck Inst Phys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1016/S0370-2693(98)00663-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Reissner-Nordstrom family of solutions can be understood to arise from the spherically symmetric sector of a nonlinear SO(2,1)/SO(1,1) sigma model coupled to three dimensional Euclidean gravity. In this context a group theoretical quantization is performed. We identify the observables of the theory and calculate their spectra. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 12 条
[1]  
[Anonymous], EXACT SOLUTIONS EINS
[2]   4-DIMENSIONAL BLACK-HOLES FROM KALUZA-KLEIN THEORIES [J].
BREITENLOHNER, P ;
MAISON, D ;
GIBBONS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :295-333
[3]  
CAVAGLIA M, 1996, THESIS TRIESTE, P70
[4]   Hamiltonian formalism for black holes and quantization [J].
Cavaglia, Marco ;
de Alfaro, Vittorio ;
Filippov, Alexandre T. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1995, 4 (05) :661-672
[5]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[6]   Group theoretical quantization of Schwarzschild and Taub-NUT [J].
Hollmann, H .
PHYSICS LETTERS B, 1996, 388 (04) :702-706
[7]  
HOLLMANN H, IN PRESS J MATH PHYS
[8]  
Israel W., 1968, Commun. Math. Phys., V8, P245, DOI 10.1007/BF01645859
[9]  
MAISON D, 1983, STATIONARY SOLUTIONS
[10]  
MARTIN J, 1994, PHYS REV D, V49, P5089