Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance

被引:424
作者
Liu, Hao [3 ]
Wang, Guoxiu [1 ]
Liu, Jian [3 ]
Qiao, Shizhang [3 ]
Ahn, Hyojun [2 ]
机构
[1] Univ Technol Sydney, Dept Chem & Forens Sci, Sydney, NSW 2007, Australia
[2] Gyeongsang Natl Univ, Sch Mat Sci & Engn, Jinju 660701, Gyeongnam, South Korea
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
HIGH-POWER; NEGATIVE ELECTRODES; NANOWIRE; STORAGE; OXIDE; NANOTUBES; CO3O4; CATHODE;
D O I
10.1039/c0jm03132a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we have synthesized highly ordered mesoporous NiO materials by a nanocasting method using mesoporous silica KIT-6 as the hard templates. Mesoporous NiO particles were characterized by small angle X-ray diffraction (XRD), nitrogen adsorption/desorption, and transmission electron microscopy (TEM). The results demonstrated that the as-prepared mesoporous NiO had an ordered Ia3d symmetric mesostructure, with a high surface area of 96 m(2)/g. Mesoporous NiO materials were tested as an anode material for lithium ion batteries, exhibiting much lower activation energy (20.75 kJ mol(-1)) compared to the bulk NiO (45.02 kJ mol(-1)). We found that the mesoporous NiO electrode has higher lithium intercalation kinetics than its bulk counterpart. The specific capacity of mesoporous NiO after 50 cycles was maintained 680 mAh/g at 0.1 C, which was much higher than that of the commercial bulk NiO (188 mAh/g). Furthermore, at a high rate of 2C, the discharge capacity of mesoporous NiO was as high as 515 mAh/g, demonstrating the potential to be used for high power lithium ion batteries.
引用
收藏
页码:3046 / 3052
页数:7
相关论文
共 41 条
[21]   Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties [J].
Lou, Xiong Wen ;
Deng, Da ;
Lee, Jim Yang ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (37) :4397-4401
[22]   Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J].
Lou, Xiong Wen ;
Deng, Da ;
Lee, Jim Yang ;
Feng, Ji ;
Archer, Lynden A. .
ADVANCED MATERIALS, 2008, 20 (02) :258-+
[23]   Ordered mesoporous spinel LiMn2O4by a soft-chemical process as a cathode material for lithium-ion batteries [J].
Luo, Jia-yan ;
Wang, Yong-gang ;
Xiong, Huan-ming ;
Xia, Yong-yao .
CHEMISTRY OF MATERIALS, 2007, 19 (19) :4791-4795
[24]   Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries [J].
Mai, Liqiang ;
Hu, Bin ;
Chen, Wen ;
Qi, Yanyuan ;
Lao, Changshi ;
Yang, Rusen ;
Dai, Ying ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2007, 19 (21) :3712-+
[25]   Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries [J].
Needham, S. A. ;
Wang, G. X. ;
Liu, H. K. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :254-257
[26]   Li Storage Properties of Disordered Graphene Nanosheets [J].
Pan, Dengyu ;
Wang, Song ;
Zhao, Bing ;
Wu, Minghong ;
Zhang, Haijiao ;
Wang, Yong ;
Jiao, Zheng .
CHEMISTRY OF MATERIALS, 2009, 21 (14) :3136-3142
[27]   Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries [J].
Park, Min-Sik ;
Wang, Guo-Xiu ;
Kang, Yong-Mook ;
Wexler, David ;
Dou, Shi-Xue ;
Liu, Hua-Kun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (05) :750-753
[28]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499
[29]   Lithium Intercalation into Mesoporous Anatase with an Ordered 3D Pore Structure [J].
Ren, Yu ;
Hardwick, Laurence J. ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (14) :2570-2574
[30]   Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries [J].
Shaju, Kuthanapillil M. ;
Jiao, Feng ;
Debart, Aurelie ;
Bruce, Peter G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1837-1842