Fabrication and measured performance of a first-generation microthermoelectric cooler

被引:62
作者
da Silva, LW [1 ]
Kaviany, M [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
antimony telluride; bismuth telluride; microthermoelectric cooler; thermoelectric films;
D O I
10.1109/JMEMS.2005.851846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The measured performance of a column-type microthermoelectric cooler, fabricated using vapor-deposited thermoelectric films and patterned using photolithography processes, is reported. The columns, made of p-type Sb2Te3 and n-type Bi2Te3 with an average thickness of 4.5 mu m, are connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. The measured Seebeck coefficient and electrical resistivity of the thermoelectric films, which were deposited with a substrate temperature of 130 degrees C, are -74 mu V/K and 3.6 x 10(-5) Omega - m (n-type, power factor of 0.15 mW/K-2 - M), and 97 mu V/K and 3.1 x 10(-5) Omega - m (p-type, power factor of 0.30 mW/K-2 - m). The cooling performance of devices with 60 thermoelectric pairs and a column width of 40 mu m. is evaluated under a minimal cooling load (thermobuoyant surface convection and surface radiation). The average cooling achieved is about 1 K. Fabrication challenges include the reduction of the column width, implementation of higher substrate temperatures for optimum thermoelectric properties, and improvements of the top connector patterning and deposition.
引用
收藏
页码:1110 / 1117
页数:8
相关论文
共 17 条
[1]  
ASHEGHI M, 2004, COMMUNICATION
[2]   New thermoelectric components using microsystem technologies [J].
Böttner, H ;
Nurnus, J ;
Gavrikov, A ;
Kühner, G ;
Jägle, M ;
Künzel, C ;
Eberhard, D ;
Plescher, G ;
Schubert, A ;
Schlereth, KH .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) :414-420
[3]  
BOTTNER H, 2004, COMMUNICATION
[4]   Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport [J].
da Silva, LW ;
Kaviany, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) :2417-2435
[5]  
DASILVA LW, 2004, P 23 INT C THERM AD
[6]  
DESILVA LW, 2005, UNPUB J APPL PHYS, V97
[7]   SiGeC/Si superlattice microcoolers [J].
Fan, XF ;
Zeng, GH ;
LaBounty, C ;
Bowers, JE ;
Croke, E ;
Ahn, CC ;
Huxtable, S ;
Majumdar, A ;
Shakouri, A .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1580-1582
[8]  
Goldsmid H.J., 1986, Electronic Refrigeration
[9]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[10]  
*JCPDS, 1983, POWD DIFFR FIL